
CA-IDMS®
SQL Self-Training Guide

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

THIS DOCUMENTATION MAY NOT BE COPIED, TRANSFERRED, REPRODUCED, DISCLOSED, OR
DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN CONSENT OF CA. THIS
DOCUMENTATION IS PROPRIETARY INFORMATION OF CA AND PROTECTED BY THE COPYRIGHT
LAWS OF THE UNITED STATES AND INTERNATIONAL TREATIES.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS
DOCUMENTATION IS GOVERNED BY THE END USER'S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

First Edition, December 2000

 2000 Computer Associates International, Inc.
One Computer Associates Plaza, Islandia, NY 11749
All rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.

 Contents

How to Use This Manual . vii

Part I. Introduction to Relational Databases and SQL

Chapter 1. Relational Database Concepts . 1-1
1.1 About this chapter . 1-3
1.2 Tables . 1-4
1.3 Relationships among tables . 1-6
1.4 Relational operations . 1-8
1.5 Benefits of a relational database . 1-10
1.6 Review . 1-11

Chapter 2. What Is SQL? . 2-1
2.1 About this chapter . 2-3
2.2 Why SQL . 2-4

2.2.1 What can SQL do? . 2-4
2.3 Components of an SQL statement . 2-6
2.4 Interactive and embedded SQL . 2-7
2.5 Review . 2-8

Part II. Using SQL Data Manipulation Language

Chapter 3. Retrieving Data . 3-1
3.1 About this chapter . 3-3
3.2 Retrieving all columns from a table . 3-4

3.2.1 Exercise 3-1 . 3-5
3.3 Retrieving selected columns from a table 3-7

3.3.1 Exercise 3-2 . 3-8
3.3.2 Exercise 3-3 . 3-8

3.4 Renaming column headings . 3-10
3.4.1 Exercise 3-4 . 3-11

3.5 Displaying calculations in columns . 3-12
3.5.1 Exercise 3-5 . 3-13

3.6 Eliminating duplicate rows . 3-21
3.6.1 Exercise 3-6 . 3-26

3.7 Organizing data . 3-28
3.7.1 Exercise 3-7 . 3-30
3.7.2 Exercise 3-8 . 3-31
3.7.3 Exercise 3-9 . 3-33
3.7.4 Exercise 3-10 . 3-36

3.8 Review . 3-38
3.9 Scenarios . 3-39

Chapter 4. Using Conditional Retrieval . 4-1
4.1 About this chapter . 4-3

Contents iii

4.2 The WHERE clause . 4-4
4.3 Comparison operators and keywords in predicates 4-5
4.4 Using comparison operators in predicates 4-6

4.4.1 Exercise 4-1 . 4-7
4.4.2 Exercise 4-2 . 4-8
4.4.3 Exercise 4-3 . 4-9
4.4.4 Exercise 4-4 . 4-9

4.5 Using keywords in predicates . 4-11
4.5.1 Exercise 4-5 . 4-11
4.5.2 Exercise 4-6 . 4-13
4.5.3 Exercise 4-7 . 4-15
4.5.4 Exercise 4-8 . 4-17
4.5.5 Exercise 4-9 . 4-19
4.5.6 Exercise 4-10 . 4-19

4.6 Using calculated values in predicates . 4-20
4.6.1 Exercise 4-11 . 4-21

4.7 Combining predicates . 4-22
4.7.1 Exercise 4-12 . 4-22

4.8 Review . 4-27
4.9 Scenarios . 4-29

Chapter 5. Using Aggregate Functions . 5-1
5.1 About this chapter . 5-3
5.2 Aggregate functions . 5-4

5.2.1 Exercise 5-1 . 5-5
5.2.2 Exercise 5-2 . 5-5
5.2.3 Exercise 5-3 . 5-6
5.2.4 Exercise 5-4 . 5-7
5.2.5 Exercise 5-5 . 5-8
5.2.6 Exercise 5-6 . 5-8
5.2.7 Exercise 5-7 . 5-9

5.3 Eliminating duplicate rows . 5-10
5.3.1 Exercise 5-8 . 5-10

5.4 Grouping information . 5-11
5.4.1 Exercise 5-9 . 5-12
5.4.2 Exercise 5-10 . 5-12

5.5 Using HAVING . 5-15
5.5.1 Exercise 5-11 . 5-15
5.5.2 Exercise 5-12 . 5-16

5.6 Renaming column headings . 5-17
5.6.1 Exercise 5-13 . 5-17

5.7 Review . 5-18
5.8 Scenarios . 5-19

Chapter 6. Accessing Multiple Tables . 6-1
6.1 About this chapter . 6-3
6.2 What is a join operation? . 6-4

6.2.1 Joining tables on common columns . 6-4
6.2.1.1 Exercise 6-1 . 6-6

6.2.2 Qualifying a column name . 6-7
6.2.3 Qualifying a table name . 6-9

iv CA-IDMS SQL Self-Training Guide

6.2.3.1 Exercise 6-2 . 6-9
6.2.4 Sorting the result . 6-10

6.2.4.1 Exercise 6-3 . 6-10
6.2.5 Additional search criteria in a join . 6-12
6.2.6 Exercise 6-4 . 6-12
6.2.7 Things to remember about joining tables 6-12

6.3 Joining a table to itself . 6-14
6.4 Using UNION . 6-16
6.5 Review . 6-18
6.6 Scenarios . 6-19

Chapter 7. Nesting SELECT Statements . 7-1
7.1 About this chapter . 7-3
7.2 SELECT statement in a WHERE clause . 7-4
7.3 Using a subquery with IN . 7-5

7.3.1 Exercise 7-1 . 7-5
7.4 Using an aggregate function in a nested SELECT statement 7-7

7.4.1 Exercise 7-2 . 7-7
7.4.1.1 Exercise 7-2B . 7-8

7.5 Using EXISTS . 7-10
7.5.1 Exercise 7-3 . 7-11

7.6 Things to remember about subqueries . 7-14
7.7 Review . 7-15
7.8 Scenarios . 7-16

Chapter 8. Updating a Table . 8-1
8.1 About this chapter . 8-3
8.2 Inserting data into a table . 8-4

8.2.1 Exercise 8-1 . 8-4
8.2.2 Exercise 8-2 . 8-6
8.2.3 Exercise 8-3 . 8-6

8.3 Modifying data in a table with SET . 8-8
8.3.1 Exercise 8-4 . 8-8
8.3.2 Exercise 8-5 . 8-10
8.3.3 Exercise 8-6 . 8-10
8.3.4 Exercise 8-7 . 8-11

8.4 Removing data from a table . 8-12
8.4.1 Exercise 8-8 . 8-12
8.4.2 Exercise 8-9 . 8-13

8.5 Review . 8-14

Part III. Appendixes

Appendix A. Sample Data Description Language A-1
A.1 About this appendix . A-3
A.2 Table creation . A-4
A.3 Indexes . A-6
A.4 Views . A-7
A.5 Data integrity . A-8

Contents v

Appendix B. Answers to Exercises . B-1
B.1 Chapter 1 . B-3
B.2 Chapter 2 . B-4
B.3 Chapter 3 . B-5
B.4 Chapter 4 . B-10
B.5 Chapter 5 . B-14
B.6 Chapter 6 . B-19
B.7 Chapter 7 . B-24
B.8 Chapter 8 . B-27

Appendix C. Table Descriptions . C-1
C.1 Table names and descriptions . C-3

Index . X-1

vi CA-IDMS SQL Self-Training Guide

How to Use This Manual

How to Use This Manual vii

What this guide is about

This self-training guide provides information on how to use interactive SQL data
manipulation language (DML).

viii CA-IDMS SQL Self-Training Guide

What you will learn

After reading this guide and doing the exercises, you should be able to:

■ Describe a relational database and state its benefits

■ Create SQL statements to retrieve data, based on specific criteria

■ Create SQL statements to insert, modify, and delete data from a table

How to Use This Manual ix

Who should use this guide

Anyone who will use basic SQL DML or who will use SQL in programs.

x CA-IDMS SQL Self-Training Guide

 Online exercises

You can do the exercises in this guide online in any one of several processing
environments. The exercises are designed to be used in the interactive environment.

If you want to do the exercises in this guide online, you must:

■ Have online access to the demonstration database that is provided with the product
installation and is used by the examples and exercises in this guide

■ Know how to access and submit statement syntax to the interactive SQL tool in
your environment

■ Be familiar with the keyboard and terminal in your environment

Check with your system administrator for access to the appropriate system, database,
and interactive SQL tool.

Accessing CA-IDMS/DB: Before you begin doing the exercises in this guide in the
CA-IDMS/DB environment, be familiar with documentation of the tool you will use to
submit SQL statements, such as the CA-IDMS Command Facility manual. Also, check
with your system administrator to learn:

■ The CA-IDMS/DC or CA-IDMS/UCF system to which you should sign on so that
you can access the demonstration database online.

Tip: The exercises in this guide use mixed upper and lower case characters.
Before you invoke the interactive SQL tool, issue the DCUF SET UPLOW
command to CA-IDMS.

■ The dictionary to which your SQL session should be connected.

■ The qualifiers of the demonstration database table names — a table name in an
SQL statement must include the qualifier unless the qualifier matches the default
schema for your SQL session.

Tip: You can set the default schema by submitting this statement: SET
SESSION CURRENT SCHEMA schema-name.

■ Whether you should roll back (eliminate) changes you make to the demonstration
database with INSERT, UPDATE, and DELETE statements.

If so, submit this statement to the Command Facility before you begin the
exercises:

set options autocommit off;

Then, after you finish a session of doing online exercises that update the database
but before you exit the Command Facility, issue this statement:

rollback work;

How to Use This Manual xi

How to proceed

If you have had no experience with relational databases, begin with Chapter 1,
“Relational Database Concepts.” Read the chapters in order and do the exercises and
review exercises in each chapter. Keep in mind that several people in your
organization may use this guide, so you probably don't want to mark in it.

If you are familiar with relational database concepts, begin with Chapter 2, “What Is
SQL?” and read the chapters in order.

How much time to allow: Allow five to eight hours to complete the entire
self-training guide including the online practice exercises, assuming you are familiar
with the keyboard. You can complete the self-training guide in one sitting or in several
sessions as follows:

■ Session 1 — Chapters 1 through 4

■ Session 2 — Chapters 5 and 6

■ Session 3 — Chapters 7 and 8

Practice exercises: Practice exercises begin in Chapter 3, “Retrieving Data.” Each
exercise after the first builds on the previous exercise. If you are doing the exercises
online, you can check your work by looking at the results shown after the exercise.

In Chapters 3 through 8, you see examples written out in full with the label How it's
done. When you enter these statements online, you'll see a result table with the same
contents as the one shown in the book. The table in the book may be abbreviated.

After each example and its result, there are exercises where the SQL statements are
not given. Instead, a description of the requested information is given, and you write
the statements necessary to achieve the result. These exercises are identified by the
labels Now you try it and Try another.

Practicing without access to a database: You can go through these exercises
without having access to a database. Simply write out your answers. Then check the
correct answers in Appendix B, “Answers to Exercises” on page B-1.

Sample administrative statements: In Appendix A, “Sample Data Description
Language” you will see sample statements for database definition that you do not
enter. They are for your information only.

Chapter review: At the end of each chapter, you will find review exercises
covering the material you have just studied. These exercises allow you to evaluate how
well you have learned the material presented. You are encouraged to do them.

In addition, Chapters 3 through 7 include scenarios at the end. Each scenario requires
you to create SQL statements to retrieve or update data based on a specific business
requirement.

Answers to exercises: Answers to online exercises, reviews, and scenarios appear
in Appendix B, “Answers to Exercises” on page B-1 B.

xii CA-IDMS SQL Self-Training Guide

The demonstration database

In the online practice exercises, you will access data from the personnel database
developed for a company called Commonwealth Auto.

Commonwealth Auto requires data to be maintained on all employees, jobs, skills,
departments, benefits, and projects. Other associated employee information is also
maintained, but you will not access it in these exercises.

The Human Resources and Accounting departments use the database for many of their
activities. In this guide, these departments make requests for reports or information
that you satisfy through your knowledge and use of SQL. The requests concern salary
and budget information, department lists, and vacation and project updates. They
range from the simple to the complex.

The requests are based on actual information maintained by a small corporation.

Database tables: The Commonwealth Auto database consists of two schemas:

■ DEMOEMPL - tables containing employee information

■ DEMOPROJ - tables containing project-related information

The information is maintained in several tables in the database. These are the tables in
the portion of the database you will use:

Table Schema Contents

ASSIGNMENT DEMOPROJ The assignment of employees to projects

BENEFITS DEMOEMPL The benefits an employee has with the
company

CONSULTANT DEMOPROJ Each consultant associated with the company

COVERAGE DEMOEMPL Employee's insurance information

DEPARTMENT DEMOEMPL Each department within the company

DIVISION DEMOEMPL Each division within the company

EMPLOYEE DEMOEMPL Personal information on each employee
working for the company

EXPERTISE DEMOPROJ The skills each employee possesses

INSURANCE_PLAN DEMOEMPL Details of each insurance plan

JOB DEMOEMPL The jobs within the company

POSITION � DEMOEMPL The jobs an employee has held and is
currently holding within the company

PROJECT DEMOPROJ The projects within the company

How to Use This Manual xiii

Appendix C, “Table Descriptions” presents a description of each column in each table
in the database.

Table Schema Contents

SKILL DEMOPROJ The skills throughout the company

Note: � - POSITION is also an SQL keyword; when it is used to qualify a column
name, the table name must be enclosed in double quotation marks. For example,
"POSITION".column-name. For information about qualifying column names, refer to
6.2.2, “Qualifying a column name” on page 6-7.

xiv CA-IDMS SQL Self-Training Guide

Part I. Introduction to Relational Databases and SQL

CA-IDMS SQL Self-Training Guide

Chapter 1. Relational Database Concepts

1.1 About this chapter . 1-3
1.2 Tables . 1-4
1.3 Relationships among tables . 1-6
1.4 Relational operations . 1-8
1.5 Benefits of a relational database . 1-10
1.6 Review . 1-11

Chapter 1. Relational Database Concepts 1-1

1-2 CA-IDMS SQL Self-Training Guide

1.1 About this chapter

1.1 About this chapter

Goal: At the end of this chapter, you will be able to:

■ Define basic relational database terms

■ List the components of a relational database

Summary: A relational database is a collection of tables containing data. A table
consists of columns (attributes that describe the table) and rows (actual occurrences of
data). Data can be accessed easily and quickly in a relational database and is viewed
in a tabular format.

Chapter 1. Relational Database Concepts 1-3

1.2 Tables

 1.2 Tables

Relational databases present information as a collection of tables. Unless empty, each
table contains related data.

Sample tables: This diagram shows the EMPLOYEE, SKILL, DEPARTMENT,
and PROJECT tables from the database for Commonwealth Auto:

 EMPLOYEE DEPARTMENT

┌────────┬───────────┬───────────┬─────────┐ ┌─────────┬─────────────────────┐

│EMP_ID │EMP_LNAME │EMP_FNAME │DEPT_ID │ │DEPT_ID │DEPT_NAME │

├────────┼───────────┼───────────┼─────────┤ ├─────────┼─────────────────────┤

│2-96 │CARLSON │THOMAS │46-- │ │52-- │CORPORATE MARKETING │

│ │ │ │ │ │ │ │

│2437 │THOMPSON │HENRY │46-- │ │46-- │MAINTENANCE │

│ │ │ │ │ │ │ │

│2598 │JACOBS │MARY │51-- │ │51-- │BILLING │

└────────┴───────────┴───────────┴─────────┘ └─────────┴─────────────────────┘

 SKILL PROJECT

 ┌──────────┬────────────────┐ ┌─────────┬───────────────────┐

 │SKILL_ID │SKILL_NAME │ │PROJ_ID │PROJ_DESC │

 ├──────────┼────────────────┤ ├─────────┼───────────────────┤

│425- │DATA ENTRY │ │C2-- │NEW BRAND RESEARCH │

 │ │ │ │ │ │

 │437- │FILING │ │C24- │SERVICE STUDY │

 │ │ │ │ │ │

 │449- │GENERAL LEDGER │ │D88- │SYSTEM ANALYSIS │

 └──────────┴────────────────┘ └─────────┴───────────────────┘

The EMPLOYEE table contains data about employees. The SKILL table contains
information about skills that are used in Commonwealth Auto. The DEPARTMENT
table contains information about the departments in the company. The PROJECT table
contains information about projects.

A table is made up of columns and rows. A portion of the EMPLOYEE table in the
Commonwealth Auto database looks like this:

 Columns

 ┌──────────┬────────────┐

 │ │ │

 ┌───↓────┬─────↓─────┬──────↓────┐

│EMP_ID │EMP_LNAME │EMP_FNAME │

 ├────────┼───────────┼───────────┤

┌──→2-96 │CARLSON │THOMAS │

│ │ │ │ │

Rows ├──→2437 │THOMPSON │HENRY │

│ │ │ │ │

 └──→2598 │JACOBS │MARY │

 └────────┴───────────┴───────────┘

Columns: A table has one or more columns. Each column:

■ Has entries containing a single type of data

■ Is displayed vertically

■ Is identified by a name

1-4 CA-IDMS SQL Self-Training Guide

1.2 Tables

For example, the employee ID (EMP_ID) column contains employee IDs, each of
which is a number. The employee IDs are listed one below the other. At the top of
the column is a heading based on the kind of data in the column.

Rows: A table has zero or more rows. Each row:

■ Contains one value in each column

■ Is displayed horizontally

■ Is not named

The first part of one row from the EMPLOYEE table looks like this:

┌────────┬───────────┬───────────┐

│2-96 │CARLSON │THOMAS │

└────────┴───────────┴───────────┘

Primary keys: A business often needs to prevent duplicate rows of data from being
stored in the same table. For example, each employee in the company needs an
employee ID different from all other IDs. This is a way of distinguishing two
employees who have the same name. You do not want to store two employees who
have the same employee ID.

To ensure that duplicate rows are not stored, a column or combination of columns is
identified as a primary key of the table when the table is defined. Each entry in the
primary key column or columns must be unique; there can be no duplicates. As a
result, the primary key uniquely identifies each row in the table.

A row of employee information in the EMPLOYEE table is uniquely identified by the
employee ID. There is only one row with employee ID 2096 and only one row with
employee ID 2437. However, there can be more than one employee with a first name
of Mary. The column containing the first name is not a unique key:

 ┌────────┬───────────┬───────────┐

│EMP_ID │EMP_LNAME │EMP_FNAME │

 ├────────┼───────────┼───────────┤

│2-96 │CARLSON │THOMAS │

│ │ │ │

 │2437 │THOMPSON │HENRY │

│ │ │ │

 │2598 │JACOBS │MARY │

 └────────┴───────────┴───────────┘

 ↑

 │

 │

Primary key

When you request data from a table and specify a value for the primary key, you see
only one row returned.

Chapter 1. Relational Database Concepts 1-5

1.3 Relationships among tables

1.3 Relationships among tables

Normally, a database contains many tables holding related information. For example,
in the Commonwealth Auto database, there is a table storing employee information and
a table storing department information. Since each employee is associated with a
department, there is a logical relationship between the two tables.

Foreign keys: The database designer establishes relationships among tables by
defining foreign keys. A foreign key is a value or combination of values in a table
that exists as the primary key in another table. The names of the columns that make
up the foreign key do not have to be the same as the primary key column names.

When you need to retrieve data in two tables at the same time, you use a foreign key
and a primary key as common columns (columns that are common between the tables).

Here's an illustration of the relationship between the EMPLOYEE and DEPARTMENT
tables:

 EMPLOYEE

┌────────┬───────────┬───────────┬─────────┐

│EMP_ID │EMP_LNAME │EMP_FNAME │DEPT_ID │

├────────┼───────────┼───────────┼─────────┤

│2-96 │CARLSON │THOMAS │46-- │

│ │ │ │ │

│2437 │THOMPSON │HENRY │46-- │

│ │ │ │ │

│2598 │JACOBS │MARY │51-- │

└────────┴───────────┴───────────┴─┬───────┘

 │

 │

 │ DEPARTMENT

 │ ┌─────────┬──────────────────────┐

 └──────┤DEPT_ID │DEPT_NAME │

 ├─────────┼──────────────────────┤

 │52-- │CORPORATE MARKETING │

 │ │ │

 │46-- │MAINTENANCE │

 │ │ │

 │51-- │BILLING │

 └─────────┴──────────────────────┘

The department ID, DEPT_ID, is the primary key in the DEPARTMENT table and a
foreign key in the EMPLOYEE table.

To find the name of the department that an employee is associated with, you would
match the two tables based on this common column.

1-6 CA-IDMS SQL Self-Training Guide

1.3 Relationships among tables

To find the name of the department that employee 2096 is associated with, you would
look up the employee in the EMPLOYEE table based on the employee ID, 2096, and
find department ID 4600. Then you would find the matching department ID 4600 in
the DEPARTMENT table to find the department name, Maintenance.

Chapter 1. Relational Database Concepts 1-7

1.4 Relational operations

 1.4 Relational operations

You can manipulate tables to form new tables with relational operations.

The three types of operations that you use most often against a relational database
involve accessing specified rows, particular columns, and more than one table.

Specified rows (SELECT): You can request that specific rows of data be retrieved
from a table or tables.

For example, you can retrieve all information on employees whose last names are
Carlson or Jacobs. Information on other employees is not returned. This type of
operation is called a select operation.

 EMPLOYEE

 ┌────────┬───────────┬───────────┬─────────┐

│ EMP_ID │ EMP_LNAME │ EMP_FNAME │ DEPT_ID │ ┌────────┬───────────┬───────────┬─────────┐

├────────┼───────────┼───────────┼─────────┤ │ EMP_ID │ EMP_LNAME │ EMP_FNAME │ DEPT_ID │

 │ 2-96 │ CARLSON │ THOMAS │ 46-- ├──┐ ├────────┼───────────┼───────────┼─────────┤

 │ │ │ │ │ │ │ 2-96 │ CARLSON │ THOMAS │ 46-- │

│ 2437 │ THOMPSON │ HENRY │ 46-- │ ├──F│ │ │ │ │

 │ │ │ │ │ │ │ 2598 │ JACOBS │ MARY │ 51-- │

 │ 2598 │ JACOBS │ MARY │ 51-- ├──┘ └────────┴───────────┴───────────┴─────────┘

 └────────┴───────────┴───────────┴─────────┘

Particular columns (PROJECT): You can identify particular columns of data to
be retrieved.

For example, you can retrieve only the last name and first name of each employee in
the company, in order to create a personnel list. This type of operation is called a
project operation.

┌────────┬───────────┬───────────┬─────────┐

│ EMP_ID │ EMP_LNAME │ EMP_FNAME │ DEPT_ID │

├────────┼───────────┼───────────┼─────────┤

│ 2-96 │ CARLSON │ THOMAS │ 46-- │

│ │ │ │ │

│ 2437 │ THOMPSON │ HENRY │ 46-- │

│ │ │ │ │

│ 2598 │ JACOBS │ MARY │ 51-- │

└────────┴─────┬─────┴─────┬─────┴─────────┘

 │ │

 └─────┬─────┘

 ↓

 ┌───────────┬───────────┐

│ EMP_LNAME │ EMP_FNAME │

 ├───────────┼───────────┤

 │ CARLSON │ THOMAS │

│ │ │

 │ THOMPSON │ HENRY │

│ │ │

 │ JACOBS │ MARY │

 └───────────┴───────────┘

1-8 CA-IDMS SQL Self-Training Guide

1.4 Relational operations

More than one table (JOIN): You can retrieve data from more than one table at
the same time.

For example, to create a list of department names and employees in each department,
you need to retrieve information on each employee along with information on the
department in which the employee works.

This data is in two tables: the employee information and department ID are in the
EMPLOYEE table, and the department ID and department name are in the
DEPARTMENT table. You can join the two tables to see both the employee and
department information as a single table. This type of operation is called a join
operation:

 EMPLOYEE

┌────────┬───────────┬───────────┬─────────┐

│EMP_ID │EMP_LNAME │EMP_FNAME │DEPT_ID │

├────────┼───────────┼───────────┼─────────┼───┐

│2-96 │CARLSON │THOMAS │46-- │ │

│ │ │ │ │ │

│2437 │THOMPSON │HENRY │46-- │ │ ┌────────┬───────────┐

│ │ │ │ │ │ │EMP_ID │DEPT_NAME │

│2598 │JACOBS │MARY │51-- │ │ ├────────┼───────────┤

└────────┴───────────┴───────────┴─────────┘ ├──F│2-96 │MAINTENANCE│

 │ │ │ │

 DEPARTMENT │ │2437 │MAINTENANCE│

┌─────────┬─────────────────────┐ │ │ │ │

│DEPT_ID │DEPT_NAME │ │ │2598 │BILLING │

 ├─────────┼─────────────────────┼───┘ └────────┴───────────┘

 │52-- │CORPORATE MARKETING │

 │ │ │

 │46-- │MAINTENANCE │

 │ │ │

 │51-- │BILLING │

 └─────────┴─────────────────────┘

You use one or more of these basic operations to retrieve data from the database. For
example, you may want to access two tables to see employee and department
information (join) but show only the employee last name and the department name
(project).

Chapter 1. Relational Database Concepts 1-9

1.5 Benefits of a relational database

1.5 Benefits of a relational database

■ You can access data in tables easily and quickly.

■ It's easy to understand the data you see because it is in a tabular format.

■ Relational databases are becoming standard on various computers.

■ When you are designing application programs to access the database, you don't
have to be aware of all the details of underlying physical database structures.

■ You can make changes to the database without affecting application programs.

1-10 CA-IDMS SQL Self-Training Guide

1.6 Review

 1.6 Review

Match each description on the left with a term or terms on the right. Terms can match
more than one description.

To check your answers, see “Review answers” on page B-3

Description Term

1. Components of a relational database that hold
the data

2. Components of a table

3. A column or combination of columns holding
values that form the primary key of another
table

4. The types of operations you can perform
against a relational database

5. A way to establish a relationship between two
tables

6. A column or combination of columns that
uniquely identifies a row in a table

a. Foreign key

b. Primary key

c. Tables

d. Rows and columns

e. Select, project, and join

Chapter 1. Relational Database Concepts 1-11

1-12 CA-IDMS SQL Self-Training Guide

Chapter 2. What Is SQL?

2.1 About this chapter . 2-3
2.2 Why SQL . 2-4

2.2.1 What can SQL do? . 2-4
2.3 Components of an SQL statement . 2-6
2.4 Interactive and embedded SQL . 2-7
2.5 Review . 2-8

Chapter 2. What Is SQL? 2-1

2-2 CA-IDMS SQL Self-Training Guide

2.1 About this chapter

2.1 About this chapter

Goal: At the end of this chapter, you will be able to:

■ Define the term 'SQL'

■ Specify why SQL is used and what you can do with it

■ Identify the components of an SQL statement

■ Compare interactive and embedded SQL

Summary: Structured Query Language (SQL) is a standardized non-procedural
language used to retrieve and update information in a relational database.

Chapter 2. What Is SQL? 2-3

2.2 Why SQL

 2.2 Why SQL

SQL serves as a standard language that:

■ Can be used either for ad hoc queries and updates or in application programs.

■ Eliminates the need for the user to know how the database is physically structured.

■ Facilitates the exchange of information from computer to computer and from
database to database.

Benefits of a standard language

■ You need less training when you move from one computer or product to another.

■ One database management system can communicate with another if they use a
standard interface.

2.2.1 What can SQL do?

You can use SQL to:

■ Define a database

■ Manipulate data in the database

■ Control access to data in the database in a multi-user environment

Data definition: You use SQL data description language (DDL) statements to
define a database and tables within the database.

Data manipulation: You use SQL DML statements to manipulate the data in
tables.

There are four basic SQL DML statements:

 ■ SELECT

 ■ INSERT

 ■ UPDATE

 ■ DELETE

The SELECT statement is used to retrieve data. The result of a query is a result table.
INSERT, UPDATE, and DELETE (all called update operations) are used to make
changes to the data.

Data control: You use SQL DDL to control access to data in a multi-user
environment. There are two basic SQL DDL commands:

 ■ GRANT

 ■ REVOKE

2-4 CA-IDMS SQL Self-Training Guide

2.2 Why SQL

The GRANT command allows another user to access data and the REVOKE command
removes that access.

If you cannot access a table, it probably means that you have not been granted access
to it.

Chapter 2. What Is SQL? 2-5

2.3 Components of an SQL statement

2.3 Components of an SQL statement

An interactive SQL statement consists of a structured set of English-like elements:

■ A verb that tells the action you want performed.

■ Additional options that modify verbs and further define the operation.

■ Named entities that identify the object of the action.

■ Clauses (required or optional) to identify the table in which the data is located
and to specify more about how you want the action performed.

■ A delimiter (;) that signals the end of the statement.

Basic SQL statement:

select distinct city from employee where emp_id > 5555;

 │ │ │ │ │ │ │ │

 │ │ │ └───────────┘ └─────────────────┘ │

Verb Options Named Clause Clause specifying Delimiter

 entity identifying selection criteria

 table

A delimiter is required for interactive SQL commands. If you enter SQL commands
in an application program, you may need to use a different delimiter or none at all.

Statement length: A statement can span several lines. It will not be executed until
the delimiter is encountered.

You can issue only one interactive SQL statement at a time.

2-6 CA-IDMS SQL Self-Training Guide

2.4 Interactive and embedded SQL

2.4 Interactive and embedded SQL

You can issue SQL statements either interactively or from within an application
program.

Interactive SQL: When you use interactive SQL to enter a request or to change
data, you get immediate results. This is the typical way of entering ad hoc statements.

For example, you might want to identify all employees who live in Boston. This SQL
statement would return a table that includes the last name and first name of all
employees residing in Boston:

select emp_lname, emp_fname

 from employee

where city = 'Boston';

Embedded SQL: You can embed SQL statements in host application programs.
With embedded SQL, the program receives the result of the request and acts on it,
displays it, or prints it. For example, this embedded SQL statement returns to a
COBOL program the last name and first name for employees living in the city
requested by the program:

exec sql

select emp_lname, emp_fname

into :emp_lname, :emp_fname

 from employee

where city = :city_in

end-exec

Chapter 2. What Is SQL? 2-7

2.5 Review

 2.5 Review

Fill in the blanks with the appropriate term or response:

1. SQL stands for _______ _______ _______.

2. You use SQL _______ statements to define tables.

3. You use SQL _______ statements to change data in a table.

4. The three SQL update operations are _______, _______, and _______.

5. An interactive SQL statement ends with a _______.

6. An SQL statement begins with a _______.

7. An interactive SQL statement _______ (can/cannot) span several lines.

8. You _______ (can/cannot) issue several interactive SQL statements at once.

9. Interactive SQL gives you _______ results.

10. Embedded SQL returns the results to the _______.

To check your answers, see “Review answers” on page B-4

2-8 CA-IDMS SQL Self-Training Guide

Part II. Using SQL Data Manipulation Language

CA-IDMS SQL Self-Training Guide

 Chapter 3. Retrieving Data

3.1 About this chapter . 3-3
3.2 Retrieving all columns from a table . 3-4

3.2.1 Exercise 3-1 . 3-5
3.3 Retrieving selected columns from a table 3-7

3.3.1 Exercise 3-2 . 3-8
3.3.2 Exercise 3-3 . 3-8

3.4 Renaming column headings . 3-10
3.4.1 Exercise 3-4 . 3-11

3.5 Displaying calculations in columns . 3-12
3.5.1 Exercise 3-5 . 3-13

3.6 Eliminating duplicate rows . 3-21
3.6.1 Exercise 3-6 . 3-26

3.7 Organizing data . 3-28
3.7.1 Exercise 3-7 . 3-30
3.7.2 Exercise 3-8 . 3-31
3.7.3 Exercise 3-9 . 3-33
3.7.4 Exercise 3-10 . 3-36

3.8 Review . 3-38
3.9 Scenarios . 3-39

Chapter 3. Retrieving Data 3-1

3-2 CA-IDMS SQL Self-Training Guide

3.1 About this chapter

3.1 About this chapter

Goal: After completing this chapter, you will be able to respond to requests for
information from Commonwealth Auto by creating SQL statements that:

■ Retrieve data from all columns and rows in a table.

■ Retrieve data from specified columns in a table.

■ Give new names to column headings.

■ Display the results of calculations.

■ Eliminate duplicate rows from your results.

■ Sort the information displayed.

Summary: To retrieve data from the database, you use the SELECT statement,
probably the most frequently used SQL statement.

Online exercises: The online exercises for this self-training guide begin in this
chapter.

Important: Before you begin, be sure to read “Online exercises” on page xi in the
preface of this guide.

When you see a complete statement ending with a delimiter (;) and the label How it's
done, you can enter the statement online. The result you obtain should have the same
content as the one in the book.

In most cases, after you have entered a statement, you will see another suggested
retrieval with the label Now you try it. This time, you will use the knowledge you just
gained to create your own statement online.

If your result does not match the one shown in the guide, or if you are unable to
compose a statement, you can look up the correct syntax in Appendix B, “Answers to
Exercises.”

At the end of this chapter, there are additional scenarios and review exercises to give
you extra practice with SQL.

The database you'll use: You will use the Commonwealth Auto database for
these online exercises. The tables in this database contain data about employees, jobs,
skills, projects, and departments.

Before you begin the online exercises in this chapter, look in Appendix C, “Table
Descriptions” at the type of information kept in each table.

Chapter 3. Retrieving Data 3-3

3.2 Retrieving all columns from a table

3.2 Retrieving all columns from a table

The basic statement for retrieving data from a table is SELECT. SELECT specifies
which data you want to retrieve. The FROM clause in the SELECT statement
specifies which table holds the data.

How it's done: The DEPARTMENT table contains the following columns:

 ■ DEPT_ID

 ■ DEPT_HEAD_ID

 ■ DIV_CODE

 ■ DEPT_NAME

In order to list all information about each department, you need to access this table
and select all columns. To do this, enter:

select R

 from department;

You can enter this statement all on one line or spanning several lines. You can use
either lowercase or uppercase.

What does the asterisk (*) mean?

It means that you want to see all the columns in the table. You don't have to list the
column names explicitly.

What does DEPARTMENT indicate?

It's the name of the table from which you want to access data.

Why is there a semicolon at the end of the statement?

SQL will not process an interactive statement until it encounters a semicolon.

What you see: The result looks like this:

3-4 CA-IDMS SQL Self-Training Guide

3.2 Retrieving all columns from a table

S T
OCF 15.- ONLINE IDMS NO ERRORS

SELECT R FROM DEPARTMENT;

R+

 R+ DEPT_ID DEPT_HEAD_ID DIV_CODE DEPT_NAME

 R+ ------- ------------ -------- ---------

R+ 112- 2--4 D-6 PURCHASING - SERVICE

R+ 42-- 1--3 D-4 LEASING - NEW CARS

R+ 49-- 2466 D-9 MIS

R+ 221- 2-1- D-4 SALES - NEW CARS

R+ 352- 3769 D-4 APPRAISAL NEW CARS

R+ 5--- 2466 D-9 CORPORATE ACCOUNTING

R+ 45-- 3222 D-9 HUMAN RESOURCES

R+ 46-- 2-96 D-6 MAINTENANCE

R+ 22-- 218- D-2 SALES - USED CARS

R+ 51-- 2598 D-6 BILLING

R+ 62-- 2461 D-9 CORPORATE ADMINISTRATION

R+ 353- 22-9 D-6 APPRAISAL - SERVICE

R+ 6--- 1--3 D-9 LEGAL

R+ 351- 3-82 D-2 APPRAISAL - USED CARS

R+ 11-- 2246 D-2 PURCHASING - USED CARS

R+

R+ 17 rows processed

W X

Rows are not ordered: There is no inherent order to the rows as they are stored in
the database. The rows in your result, therefore, may be in a different order from those
displayed here. The message specifying the number of rows returned may be worded
differently and appear in a different position on your screen.

 3.2.1 Exercise 3-1

Now you try it: Commonwealth Auto maintains information on all the skills the
company requires to do business. This information is maintained in the SKILL table.

Enter a statement to access all skill information. It isn't important whether you use
uppercase or lowercase in your SQL statement.

What table do you need to access?

You need to access the SKILL table.

The result looks like this:

Chapter 3. Retrieving Data 3-5

3.2 Retrieving all columns from a table

S T
SKILL_ID SKILL_NAME SKILL_DESC

 -------- ---------- ----------

542- Writing General writing skills

4444 Assembly Auto body assembly experience

516- Calculus Knowledge of advanced mathematics

1--- Management Experience managing people

442- Telephone Basic customer support

7--- Sales Background in sales techniques

441- Typing Minimum 6- wpm

6666 Billing Basic billing procedures

3-65 Electronics Electronic diagnosis and repair

543- Mktng Writing Background in promotional writing

647- Window Installation Installation of automotive windows

513- Basic Math Knowledge of basic math functions

55-- Gen Mktng Knowledge of basic marketing concepts

518- Statistics Creating & evaluating statistics

667- Gas Engine Repair Experience in gasoline engine repair

677- Purchasing Basic buying & negotiation procedures

437- Filing Ability to organize correspondence/invoices

1-3- Acct Mgt Experience in managing acctng activities

53-9 Appraising Used car evaluation

449- Gen Ledger Experience with general ledger

665- Diesel Engine Repair Experience in diesel engine repair

443- Interviewing Basic interviewing experience

3333 Bodywork Experience in repairing auto bodies

3-88 Brake work Brake diagnosis and repair

52-- Gen Acctng Familiarity with basic AR and AP

425- Data Entry Familiarity with computer keyboard

26 rows processed

W X

If your results do not match what you see above, check “Exercise 3-1 answer” on
page B-5 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

3-6 CA-IDMS SQL Self-Training Guide

3.3 Retrieving selected columns from a table

3.3 Retrieving selected columns from a table

You just retrieved all columns and all rows from a table.

If you want to see only some of the columns, specify the names of the columns you
want to see. Put a comma between column names.

How it's done: If you want to see only the department ID and name for each
department in the company, enter:

select dept_id, dept_name
 from department;

The result of this SELECT statement is a list of the values in the DEPT_ID and
DEPT_NAME columns.

Where did you get the column names?

They come from the table descriptions. In this guide, the table descriptions appear in
Appendix C, “Table Descriptions.”

The result looks like this:

S T
DEPT_ID DEPT_NAME

 ------- ---------

112- PURCHASING - SERVICE

42-- LEASING - NEW CARS

 49-- MIS

221- SALES - NEW CARS

352- APPRAISAL NEW CARS

 5--- CORPORATE ACCOUNTING

 45-- HUMAN RESOURCES

 46-- MAINTENANCE

22-- SALES - USED CARS

 51-- BILLING

 62-- CORPORATE ADMINISTRATION

353- APPRAISAL - SERVICE

 6--- LEGAL

351- APPRAISAL - USED CARS

11-- PURCHASING - USED CARS

 52-- CORPORATE MARKETING

111- PURCHASING - NEW CARS

17 rows processed

W X

How does this compare with the results displayed when you specified SELECT *?

You see only the columns you selected rather than all columns.

What determines the order of the columns?

It's based on the order in which you listed the columns in your SELECT statement.

Chapter 3. Retrieving Data 3-7

3.3 Retrieving selected columns from a table

 3.3.1 Exercise 3-2

Now you try it: The Human Resources department is responsible for keeping track
of all skill information for the company. Right now, they need to see which skill IDs
and names are currently on file. Create a SELECT statement to retrieve and display
skill IDs and names from the SKILL table.

Look in Appendix C, “Table Descriptions” to identify the column names.

The result looks like this:

S T
SKILL_ID SKILL_NAME

 -------- ----------

 542- Writing

 4444 Assembly

 516- Calculus

 1--- Management

 442- Telephone

 7--- Sales

 441- Typing

 6666 Billing

 3-65 Electronics

 543- Mktng Writing

 647- Window Installation

 513- Basic Math

 55-- Gen Mktng

 518- Statistics

667- Gas Engine Repair

 677- Purchasing

 437- Filing

 1-3- Acct Mgt

 53-9 Appraising

 449- Gen Ledger

665- Diesel Engine Repair

 443- Interviewing

 3333 Bodywork

 3-88 Brake work

 52-- Gen Acctng

 425- Data Entry

W X

If your results do not match what you see above, check “Exercise 3-2 answer” on
page B-5 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

What message do you see?

You see a message stating the number of rows that have been retrieved.

 3.3.2 Exercise 3-3

Try another: The president of the company wants a Christmas card list of all
employees. He wants to see the first and last names for each employee and the street
and community in which they live.

Enter a SELECT statement to do this, using the EMPLOYEE table.

3-8 CA-IDMS SQL Self-Training Guide

3.3 Retrieving selected columns from a table

The result looks like this:

S T
 EMP_FNAME EMP_LNAME STREET CITY

 --------- --------- ------ ----

 Samuel Spade 47 London St Canton

 Catherine Williams 566 Lincoln St Boston

 Janice Dexter 399 Pine St Medford

Cora Parker 2 Spring St Boston

 Mark White 56- Camden St Canton

 Marylou Hamel 11 Main St Medford

James Gallway 12 East Speen St Stoneham

 Ronald Wilder 3- Heron Ave Natick

 Frank Lowe 25 Rutland St Natick

 Mary Umidy 895A Braintree Circle Medford

 Cynthia Taylor 2-1 Washington St Concord

John Brooks 129 Bedford St Camden

 Carl Smith 18 South St Newton

 Martin Loren 4-1 Cross St Grover

 Bruce MacGregor 254 Waterside Rd Camden

 Michael Smith 2-1 Summer St Brookline

 William Griffin 39- Sherman St Taunton

 Jason Thompson 3 Flintlock St Natick

 Stephen Wills 34 Avon Dr Canton

 David Alexander 18 Cross St Grover

55 rows processed

W X

If your results do not match what you see above, check “Exercise 3-3 answer” on
page B-5 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Chapter 3. Retrieving Data 3-9

3.4 Renaming column headings

3.4 Renaming column headings

In your results, each column has a heading. The heading is the name of the column as
it was specified in the table definition.

S T
 EMP_FNAME EMP_LNAME STREET CITY

 --------- --------- ------ ----

 Samuel Spade 47 London St Canton

 Catherine Williams 566 Lincoln St Boston

 Janice Dexter 399 Pine St Medford

Cora Parker 2 Spring St Boston

 Mark White 56- Camden St Canton

 .

 .

 .

55 rows processed

W X

How it's done: To make a column heading more meaningful, you can rename it.
To do this, add AS and the name you want to use after each column name:

select emp_fname as "First Name",
emp_lname as "Last Name",
street as "Street",
city as "City"

 from employee;

Enclose new heading names in double quotation marks.

Don't forget the commas between column names.

This is the same SELECT statement you used to retrieve selected columns. However,
in this case, the headings will have a more meaningful appearance.

These new column headings assigned using AS are temporary names and appear only
in the display.

The result looks like this:

3-10 CA-IDMS SQL Self-Training Guide

3.4 Renaming column headings

S T
 First Name Last Name Street City

 ---------- --------- ------ ----

 Samuel Spade 47 London St Canton

 Catherine Williams 566 Lincoln St Boston

Janice Dexter 399 Pine St Medford

 Cora Parker 2 Spring St Boston

 Mark White 56- Camden St Canton

 Marylou Hamel 11 Main St Medford

 James Gallway 12 East Speen St Stoneham

Ronald Wilder 3- Heron Ave Natick

 Frank Lowe 25 Rutland St Natick

 Mary Umidy 895A Braintree Circle Medford

 Cynthia Taylor 2-1 Washington St Concord

 John Brooks 129 Bedford St Camden

 Carl Smith 18 South St Newton

 Martin Loren 4-1 Cross St Grover

 Bruce MacGregor 254 Waterside Rd Camden

 Michael Smith 2-1 Summer St Brookline

William Griffin 39- Sherman St Taunton

 Jason Thompson 3 Flintlock St Natick

 Stephen Wills 34 Avon Dr Canton

 David Alexander 18 Cross St Grover

 .

 .

 .

55 rows processed

W X

 3.4.1 Exercise 3-4

Now you try it: Earlier, you produced a report that displayed department ID and
name from the DEPARTMENT table. Produce the same report and rename the
headings "Department ID" and "Name." The result looks like this:

S T
 DEPARTMENT ID NAME

 ------------- ----

112- PURCHASING - SERVICE

42-- LEASING - NEW CARS

 49-- MIS

221- SALES - NEW CARS

352- APPRAISAL NEW CARS

 5--- CORPORATE ACCOUNTING

 45-- HUMAN RESOURCES

 46-- MAINTENANCE

22-- SALES - USED CARS

 51-- BILLING

 62-- CORPORATE ADMINISTRATION

353- APPRAISAL - SERVICE

 6--- LEGAL

351- APPRAISAL - USED CARS

11-- PURCHASING - USED CARS

 52-- CORPORATE MARKETING

111- PURCHASING - NEW CARS

17 rows processed

W X

If your results do not match what you see above, check “Exercise 3-4 answer” on
page B-5 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Chapter 3. Retrieving Data 3-11

3.5 Displaying calculations in columns

3.5 Displaying calculations in columns

You can use arithmetic expressions to calculate new values from a column.

Use the following symbols for arithmetic operations:

Order of evaluation: Multiplication and division are performed first, from left to
right. Addition and subtraction are performed second, from left to right. You can
control the order in which operations are performed by using parentheses to enclose
the operations you want performed first.

Computing with null values: Unless the column definition specifies otherwise, a
column can contain no value. No value is also called null, or a null value. The result
table usually shows null values as '<null>'.

The result of any calculation involving a null value is always a null value.

How it's done: This year, the base rate for all jobs is rising 5 percent above last
year's rates. The budget group needs a report showing job ID, last year's rate, and last
year's rate plus 5 percent. This information is contained in the JOB table. To display
the new rate, you will have to multiply the current rate by 1.05.

To create a table showing job ID, last year's rate, and this year's rate, enter:

select job_id as "Job", min_rate as "Minimum Rate",

min_rate � 1.�5 as "Adjusted Rate"
 from job;

You can omit the space on either side of the arithmetic symbol.

The result looks like this:

 Symbol Meaning

 * Multiplication

 / Division

+ Addition

 - Subtraction

3-12 CA-IDMS SQL Self-Training Guide

3.5 Displaying calculations in columns

S T
 JOB MINIMUM RATE ADJUSTED RATE

 --- ------------ -------------

8--1 9----.-- 945--.----

2-77 17---.-- 1785-.----

9--1 111---.-- 11655-.----

3-51 8.5- 8.925-

47-- 33---.-- 3465-.----

3-29 25---.-- 2625-.----

6-11 594--.-- 6237-.----

413- 35---.-- 3675-.----

4666 41---.-- 43-5-.----

4123 35---.-- 3675-.----

5555 3----.-- 315--.----

4-25 31---.-- 3255-.----

4-23 44---.-- 462--.----

2-51 8.8- 9.24--

4734 25---.-- 2625-.----

511- 4----.-- 42---.----

2-53 8.8- 9.24--

6--4 66---.-- 693--.----

5111 27---.-- 2835-.----

4-12 21---.-- 22-5-.----

2-55 17---.-- 1785-.----

456- 11.45 12.-225

589- 45---.-- 4725-.----

3333 216--.-- 2268-.----

6-21 76---.-- 798--.----

25 rows processed

W X

Why did you provide a heading for the calculated column?

You provided a heading to have a more meaningful name. If you hadn't, the heading
would have been (EXPR) or Expression.

 3.5.1 Exercise 3-5

Now you try it: The Corporate Marketing department is considering revamping the
bonus system. They want a report showing employee IDs, how much salary they
earned and, if any, the bonus percentage and how much bonus each employee earned.
This information is maintained in the POSITION table as SALARY_AMOUNT and
BONUS_PERCENT.

Enter a SELECT statement to display this information. Rename the columns
appropriately.

The result looks like this:

Chapter 3. Retrieving Data 3-13

3.5 Displaying calculations in columns

S T
EMPLOYEE SALARY BONUS PERCENTAGE BONUS PAID

-------- ------ ---------------- ----------

 3411 53665.-- <null> <null>

 3411 44--1.4- <null> <null>

 4773 4524-.-- <null> <null>

 2-1- 7644-.-- -.275 21-21.-----

 3338 22-48.84 <null> <null>

 2246 59488.-- <null> <null>

 2246 29536.-- <null> <null>

 1-34 <null> <null> <null>

 2424 <null> <null> <null>

 3767 5-44-.5- -.23- 116-1.315--

 3767 22--.-- <null> <null>

 3449 74776.-- <null> <null>

 3-82 68-16.-- <null> <null>

 3341 48465.8- <null> <null>

 466- 364--.-- -.25- 91--.-----

 466- 24---.-- <null> <null>

 22-9 66144.-- <null> <null>

 2894 111593.-- <null> <null>

 4--1 36921.-- -.23- 8491.83---

 5-9- 48568.48 -.2-5 9956.5384-

 1765 47--9.34 <null> <null>

 4456 <null> <null> <null>

 1765 18--1.-- <null> <null>

 3991 42-16.-- -.235 9873.76---

 3991 27976.-- <null> <null>

 3778 <null> <null> <null>

 4358 57824.5- <null> <null>

 4962 3-68-.-- <null> <null>

 218- 76961.-- <null> <null>

 218- 19---.1- <null> <null>

 21-6 2392-.-- <null> <null>

 3222 11-448.-- <null> <null>

 4--2 286-1.8- <null> <null>

 2437 <null> <null> <null>

 2-96 8528-.-- <null> <null>

 2-96 <null> <null> <null>

 2--4 5928-.-- <null> <null>

 2--4 <null> <null> <null>

 51-3 <null> <null> <null>

 5--8 47944.-- <null> <null>

 4321 56977.8- <null> <null>

 2598 <null> <null> <null>

 3764 54184.-- -.26- 14-87.84---

 3764 28912.-- <null> <null>

 2448 7-72-.-- -.255 18-33.6----

 2461 43784.-- <null> <null>

 1234 117832.68 <null> <null>

 1--3 146432.-- <null> <null>

 4-27 28-81.4- <null> <null>

 2466 94953.52 <null> <null>

 2174 49921.76 <null> <null>

 2781 43888.-- <null> <null>

 37-4 2288-.-- <null> <null>

 4--8 24441.-- <null> <null>

 3433 <null> <null> <null>

 3288 <null> <null> <null>

 3841 338--.-- <null> <null>

 47-3 24857.-- <null> <null>

 3294 53665.56 <null> <null>

 3769 416--.-- <null> <null>

 3118 45241.94 <null> <null>

61 rows processed

W X

3-14 CA-IDMS SQL Self-Training Guide

3.5 Displaying calculations in columns

If your results do not match what you see above, check “Exercise 3-5 answer” on
page B-5 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Why the '<null>' entries?

Most positions are not sales positions and do not have bonuses attached.

Using parentheses: Use parentheses to specify the order in which you want the
arithmetic evaluation to take place.

How it's done: You have been asked to produce a report that shows what weekly
salaries would look like before and after a raise of $1,000 per year. Show yearly
salary as well.

Try this without using parentheses first:

select salary_amount,

salary_amount / 52 as "Current Wkly Sal",

salary_amount + 1--- / 52 as "Adjusted Wkly Sal"

 from position;

The result looks like this:

Chapter 3. Retrieving Data 3-15

3.5 Displaying calculations in columns

S T
 SALARY_AMOUNT CURRENT WKLY SAL ADJUSTED WKLY SAL

 ------------- ---------------- -----------------

 53665.-- 1-32.-19 53684.--

44--1.4- 846.18- 44-2-.4-

4524-.-- 87-.--- 45259.--

 7644-.-- 147-.--- 76459.--

22-48.84 424.-16 22-67.84

 59488.-- 1144.--- 595-7.--

29536.-- 568.--- 29555.--

 <null> <null> <null>

 <null> <null> <null>

5-44-.5- 97-.--9 5-459.5-

22--.-- 42.3-7 2219.--

 74776.-- 1438.--- 74795.--

 68-16.-- 13-8.--- 68-35.--

48465.8- 932.-34 48484.8-

364--.-- 7--.--- 36419.--

24---.-- 461.538 24-19.--

 66144.-- 1272.--- 66163.--

111593.-- 2146.-19 111612.--

36921.-- 71-.-19 3694-.--

48568.48 934.--9 48587.48

47--9.34 9-4.-25 47-28.34

 <null> <null> <null>

18--1.-- 346.173 18-2-.--

42-16.-- 8-8.--- 42-35.--

27976.-- 538.--- 27995.--

 <null> <null> <null>

 57824.5- 1112.--9 57843.5-

3-68-.-- 59-.--- 3-699.--

 76961.-- 148-.-19 7698-.--

19---.1- 365.386 19-19.1-

2392-.-- 46-.--- 23939.--

11-448.-- 2124.--- 11-467.--

286-1.8- 55-.-34 2862-.8-

 <null> <null> <null>

 8528-.-- 164-.--- 85299.--

 <null> <null> <null>

 5928-.-- 114-.--- 59299.--

 <null> <null> <null>

 <null> <null> <null>

47944.-- 922.--- 47963.--

 56977.8- 1-95.726 56996.8-

 <null> <null> <null>

 54184.-- 1-42.--- 542-3.--

28912.-- 556.--- 28931.--

 7-72-.-- 136-.--- 7-739.--

43784.-- 842.--- 438-3.--

117832.68 2266.-13 117851.68

146432.-- 2816.--- 146451.--

28-81.4- 54-.-26 281--.4-

 94953.52 1826.-29 94972.52

49921.76 96-.-33 4994-.76

43888.-- 844.--- 439-7.--

2288-.-- 44-.--- 22899.--

24441.-- 47-.-19 2446-.--

 <null> <null> <null>

 <null> <null> <null>

338--.-- 65-.--- 33819.--

24857.-- 478.-19 24876.--

 53665.56 1-32.-3- 53684.56

416--.-- 8--.--- 41619.--

45241.94 87-.-37 4526-.94

 61 rows processed

W X

Is the result correct?

3-16 CA-IDMS SQL Self-Training Guide

3.5 Displaying calculations in columns

Take one salary and do your own pencil and paper calculation to check your answers:

24,---.-- + 1,--- = 25,---.-- / 52 = 48-.76923

The result is wrong: In the calculation involving the increase, the division occurred
before the addition instead of after. Remember that the default order of evaluation is
multiplication and division, performed left to right, and then addition and subtraction,
performed left to right.

Chapter 3. Retrieving Data 3-17

3.5 Displaying calculations in columns

Use parentheses to specify that you want the addition to take place before the division.
Enter:

select salary_amount,

salary_amount / 52 as "Current Wkly Sal",

(salary_amount + 1---) / 52 as "Adjusted Wkly Sal"
 from position;

The result looks like this:

3-18 CA-IDMS SQL Self-Training Guide

3.5 Displaying calculations in columns

S T
 SALARY_AMOUNT CURRENT WKLY SAL ADJUSTED WKLY SAL

 ------------- ---------------- -----------------

 53665.-- 1-32.-19 1-51.25-

 44--1.4- 846.18- 865.411

 4524-.-- 87-.--- 889.23-

 7644-.-- 147-.--- 1489.23-

 22-48.84 424.-16 443.246

 59488.-- 1144.--- 1163.23-

 29536.-- 568.--- 587.23-

 <null> <null> <null>

 <null> <null> <null>

 5-44-.5- 97-.--9 989.24-

 22--.-- 42.3-7 61.538

 74776.-- 1438.--- 1457.23-

 68-16.-- 13-8.--- 1327.23-

 48465.8- 932.-34 951.265

 364--.-- 7--.--- 719.23-

 24---.-- 461.538 48-.769

 66144.-- 1272.--- 1291.23-

 111593.-- 2146.-19 2165.25-

 36921.-- 71-.-19 729.25-

 48568.48 934.--9 953.24-

 47--9.34 9-4.-25 923.256

 <null> <null> <null>

 18--1.-- 346.173 365.4-3

 42-16.-- 8-8.--- 827.23-

 27976.-- 538.--- 557.23-

 <null> <null> <null>

 57824.5- 1112.--9 1131.24-

 3-68-.-- 59-.--- 6-9.23-

 76961.-- 148-.-19 1499.25-

 19---.1- 365.386 384.617

 2392-.-- 46-.--- 479.23-

 11-448.-- 2124.--- 2143.23-

 286-1.8- 55-.-34 569.265

 <null> <null> <null>

 8528-.-- 164-.--- 1659.23-

 <null> <null> <null>

 5928-.-- 114-.--- 1159.23-

 <null> <null> <null>

 <null> <null> <null>

 47944.-- 922.--- 941.23-

 56977.8- 1-95.726 1114.957

 <null> <null> <null>

 54184.-- 1-42.--- 1-61.23-

 28912.-- 556.--- 575.23-

 7-72-.-- 136-.--- 1379.23-

 43784.-- 842.--- 861.23-

 117832.68 2266.-13 2285.243

 146432.-- 2816.--- 2835.23-

 28-81.4- 54-.-26 559.257

 94953.52 1826.-29 1845.26-

 49921.76 96-.-33 979.264

 43888.-- 844.--- 863.23-

 2288-.-- 44-.--- 459.23-

 24441.-- 47-.-19 489.25-

 <null> <null> <null>

 <null> <null> <null>

 338--.-- 65-.--- 669.23-

 24857.-- 478.-19 497.25-

 53665.56 1-32.-3- 1-51.26-

 416--.-- 8--.--- 819.23-

 45241.94 87-.-37 889.268

 61 rows processed

W X

How does this result match your written calculation?

Chapter 3. Retrieving Data 3-19

3.5 Displaying calculations in columns

If you did your written calculation correctly, it should match this result.

3-20 CA-IDMS SQL Self-Training Guide

3.6 Eliminating duplicate rows

3.6 Eliminating duplicate rows

Sometimes a row in a selected column contains information that is the same as
information in another row.

Why duplicates occur: The EXPERTISE table contains skill IDs, the IDs of
employees who have the skills, the level of ability an employee has in a skill, and the
date the ability was acquired. Commonwealth Auto may have several employees who
match a particular skill in the SKILL table and may have no employees who match
another skill.

How it's done: To obtain a list of skill IDs associated with at least one employee,
enter:

select skill_id

 from expertise;

This gives a list of skill IDs that have been matched to employees who have that skill.
Any skill that has no employees associated with it will not show up in the result.

The result looks like this:

Chapter 3. Retrieving Data 3-21

3.6 Eliminating duplicate rows

S T
SKILL_ID

 1---

 647-

 1---

 677-

 677-

 7---

 3-65

 3333

 677-

 443-

 7---

 53-9

 1---

 667-

 647-

 3333

 4444

 7---

 425-

 437-

 518-

 1-3-

 449-

 52--

 6666

 542-

 543-

 1---

 55--

 53-9

 518-

 1---

 443-

 3333

 665-

 667-

 677-

 677-

 53-9

 55--

 665-

 52--

 7---

 7---

 7---

 53-9

 52--

 6666

 437-

 441-

 7---

 7---

 437-

 441-

 442-

 7---

 1---

 443-

 55--

 3-65

W X

3-22 CA-IDMS SQL Self-Training Guide

3.6 Eliminating duplicate rows

S T
 667-

 7---

 425-

 513-

 53-9

 513-

 677-

 7---

 52--

 69 rows processed

W X

Why are some of the skill IDs repeated?

The result shows the skill ID for each employee. If more than one employee has that
particular skill, the skill ID is repeated.

Chapter 3. Retrieving Data 3-23

3.6 Eliminating duplicate rows

To see this more clearly, look at the skills and the associated employees by entering:

select skill_id, emp_id

 from expertise;

The result looks like this:

S T
SKILL_ID EMP_ID

 -------- ------

 1--- 1--3

 647- 1-34

 1--- 1234

 677- 1765

 677- 2--4

 7--- 2-1-

 3-65 2-96

 3333 2-96

 677- 21-6

 443- 2174

 7--- 218-

 53-9 22-9

 1--- 2246

 667- 2246

 647- 2424

 3333 2437

 4444 2437

 7--- 2448

 425- 2461

 437- 2461

 518- 2461

 1-3- 2466

 449- 2466

 52-- 2466

 6666 2598

 542- 2781

 543- 2781

 1--- 2894

 55-- 2894

 53-9 3-82

 518- 3118

 1--- 3222

 443- 3222

 3333 3288

W X

3-24 CA-IDMS SQL Self-Training Guide

3.6 Eliminating duplicate rows

S T
 665- 3288

 667- 3288

 677- 3294

 677- 3338

 53-9 3341

 55-- 3411

 665- 3433

 52-- 3449

 7--- 37-4

 7--- 3764

 7--- 3767

 53-9 3769

 52-- 3778

 6666 3778

 437- 3841

 441- 3841

 7--- 3991

 7--- 4--1

 437- 4--2

 441- 4--2

 442- 4--8

 7--- 4-27

 1--- 4321

 443- 4321

 55-- 4358

 3-65 4456

 667- 4456

 7--- 466-

 425- 47-3

 513- 47-3

 53-9 4773

 513- 4962

 677- 5--8

 7--- 5-9-

 52-- 51-3

 69 rows processed

W X

You want to eliminate the duplicate rows resulting from your first SELECT statement
in order to see each skill ID only once.

To eliminate these rows, you can use the DISTINCT option immediately after the
word SELECT.

How it's done with DISTINCT: Using the first SELECT statement, add DISTINCT
after SELECT:

select distinct skill_id
 from expertise;

The result looks like this:

Chapter 3. Retrieving Data 3-25

3.6 Eliminating duplicate rows

S T
 SKILL_ID

 1---

 1-3-

 3-65

 3333

 425-

 437-

 441-

 442-

 443-

 4444

 449-

 513-

 518-

 52--

 53-9

 542-

 543-

 55--

 647-

 665-

 6666

 667-

 677-

 7---

 24 rows processed

W X

Now the result shows a list of skill IDs with no duplicates.

Since using DISTINCT eliminates duplicate rows, fewer rows are returned.

 3.6.1 Exercise 3-6

Now you try it: The Accounting department needs a list of communities represented
by employees in this company in order to identify applicable city taxes. One of the
columns in the EMPLOYEE table contains the name of the community in which the
employee resides. Enter a SELECT statement to list the communities in the table
without showing any duplicates.

The result looks like this:

3-26 CA-IDMS SQL Self-Training Guide

3.6 Eliminating duplicate rows

S T
 CITY

 Boston

 Brookline

 Camden

 Canton

 Concord

 Dedham

 Grover

 Medford

 Natick

 Newton

 Stoneham

 Taunton

 Wilmington

 13 rows processed

W X

If your results do not match what you see above, check “Exercise 3-6 answer” on
page B-5 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Chapter 3. Retrieving Data 3-27

3.7 Organizing data

 3.7 Organizing data

When you retrieve data from the database, the rows are in an order selected by the
database management system. If you want the data sorted in a particular order, use the
ORDER BY clause. The ORDER BY clause must be the last clause in a SELECT
statement.

How it's done: You can order an employee list by entering:

select emp_id, emp_lname

 from employee

order by emp_lname;

The result looks like this:

3-28 CA-IDMS SQL Self-Training Guide

3.7 Organizing data

S T
 EMP_ID EMP_LNAME

 ------ ---------

 218- Albertini

 1765 Alexander

 2461 Anderson

 1--3 Baldwin

 2466 Bennett

 4321 Bradley

 3-82 Brooks

 2-96 Carlson

 2145 Catlin

 4--8 Clark

 4-27 Courtney

 3433 Crane

 3841 Cromwell

 4773 Dexter

 3769 Donelson

 51-3 Ferguson

 3778 Ferndale

 5--8 Fordman

 1-34 Gallway

 2894 Griffin

 47-3 Halloran

 2246 Hamel

 2598 Jacobs

 2--4 Johnson

 3294 Johnson

 3199 Loren

 3767 Lowe

 2448 Lynn

 466- MacGregor

 1234 Mills

 37-4 Moore

 3764 Park

 2-1- Parker

 4358 Robinson

 4--2 Roy

 3288 Sampson

 22-9 Smith

 3341 Smith

 2299 Spade

 3449 Taylor

 4--1 Thompson

 2437 Thompson

 4456 Thompson

 2781 Thurston

 2898 Umidy

 3222 Voltmer

 3338 White

 4962 White

 21-6 Widman

 2424 Wilder

 3991 Wilkins

 3411 Williams

 5-9- Wills

 3118 Wooding

 2174 Zander

 55 rows processed

W X

You can specify either ascending (ASC) or descending (DESC) order. The default
order is ascending.

If you sort on a column that contains null values, the null values are grouped together.

The column you choose to order by must also be in the column list after SELECT.

Chapter 3. Retrieving Data 3-29

3.7 Organizing data

 3.7.1 Exercise 3-7

Now you try it: Change the example above so that it is sorted in descending order.
Specify DESC after the column name in the ORDER BY clause.

The result looks like this:

S T
 EMP_ID EMP_LNAME

 ------ ---------

 2174 Zander

 3118 Wooding

 5-9- Wills

 3411 Williams

 3991 Wilkins

 2424 Wilder

 21-6 Widman

 3338 White

 4962 White

 3222 Voltmer

 2898 Umidy

 2781 Thurston

 2437 Thompson

 4456 Thompson

 4--1 Thompson

 3449 Taylor

 2299 Spade

 22-9 Smith

 3341 Smith

 3288 Sampson

 4--2 Roy

 4358 Robinson

 2-1- Parker

 3764 Park

 37-4 Moore

 1234 Mills

 466- MacGregor

 2448 Lynn

 3767 Lowe

 3199 Loren

 2--4 Johnson

 3294 Johnson

 2598 Jacobs

 2246 Hamel

 47-3 Halloran

 2894 Griffin

 1-34 Gallway

 5--8 Fordman

 3778 Ferndale

 51-3 Ferguson

 3769 Donelson

 4773 Dexter

 3841 Cromwell

 3433 Crane

 4-27 Courtney

 4--8 Clark

 2145 Catlin

 2-96 Carlson

 3-82 Brooks

 4321 Bradley

 2466 Bennett

 1--3 Baldwin

 2461 Anderson

 1765 Alexander

 218- Albertini

 55 rows processed

W X

3-30 CA-IDMS SQL Self-Training Guide

3.7 Organizing data

If your results do not match what you see above, check “Exercise 3-7 answer” on
page B-5 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

 3.7.2 Exercise 3-8

Try another: Display the skills available in the company, as you did earlier, but list
them in numeric order to make it easier to scan. Show both skill ID and skill name
from the SKILL table.

The result looks like this:

S T
 SKILL_ID SKILL_NAME

 -------- ----------

 1--- Management

 1-3- Acct Mgt

 3-65 Electronics

 3-88 Brake work

 3333 Bodywork

 425- Data Entry

 437- Filing

 441- Typing

 442- Telephone

 443- Interviewing

 4444 Assembly

 449- Gen Ledger

 513- Basic Math

 516- Calculus

 518- Statistics

 52-- Gen Acctng

 53-9 Appraising

 542- Writing

 543- Mktng Writing

 55-- Gen Mktng

 647- Window Installation

665- Diesel Engine Repair

 6666 Billing

667- Gas Engine Repair

 677- Purchasing

 7--- Sales

 26 rows processed

W X

If your results do not match what you see above, check “Exercise 3-8 answer” on
page B-5 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Multiple sort columns: You've seen how to sort selected rows by specifying
ORDER BY and a column name. If you specify more than one column name after
ORDER BY, SQL sorts rows by the first column named, then by the second column
named, and so on.

How it's done: You often want to sort all employees by first name within last name
for an employee list. To do this, enter:

select emp_lname, emp_fname

 from employee

order by emp_lname, emp_fname;

Chapter 3. Retrieving Data 3-31

3.7 Organizing data

The result looks like this:

S T
 EMP_LNAME EMP_FNAME

 --------- ---------

 Albertini Joan

 Alexander David

 Anderson Alice

 Baldwin James

 Bennett Patricia

 Bradley George

 Brooks John

 Carlson Thomas

 Catlin Martin

 Clark Robert

 Courtney Cecile

 Crane Herbert

 Cromwell Michelle

 Dexter Janice

 Donelson Julie

 Ferguson Adele

 Ferndale Jane

 Fordman Timothy

 Gallway James

 Griffin William

 Halloran Martin

 Hamel Marylou

 Jacobs Mary

 Johnson Carolyn

 Johnson Eleanor

 Loren Martin

 Lowe Frank

 Lynn David

 MacGregor Bruce

 Mills Thomas

 Moore Richard

 Park Deborah

 Parker Cora

 Robinson Judith

 Roy Linda

 Sampson Ralph

 Smith Carl

 Smith Michael

 Spade Samuel

 Taylor Cynthia

 Thompson Henry

 Thompson Jason

 Thompson Thomas

 Thurston Joseph

 Umidy Mary

 Voltmer Louise

 White Mark

 White Peter

 Widman Susan

 Wilder Ronald

 Wilkins Fred

 Williams Catherine

 Wills Stephen

 Wooding Alan

 Zander Jonathan

 55 rows processed

W X

3-32 CA-IDMS SQL Self-Training Guide

3.7 Organizing data

 3.7.3 Exercise 3-9

Now you try it: Management needs a list of all employees assigned to each
department. Enter a SELECT statement to show the department ID, last name, and
employee ID from the EMPLOYEE table. Order the list by last name within each
department. Use the table descriptions in Appendix C, “Table Descriptions” to find the
correct column names.

The result looks like this:

Chapter 3. Retrieving Data 3-33

3.7 Organizing data

S T
DEPT_ID EMP_LNAME EMP_ID

 ------- --------- ------

 11-- Fordman 5--8

 11-- Hamel 2246

 11-- Halloran 47-3

 111- Widman 21-6

 111- Alexander 1765

 112- White 3338

 112- Johnson 3294

 112- Johnson 2--4

 112- Umidy 2898

 22-- Moore 37-4

 22-- Lowe 3767

 22-- Albertini 218-

 22-- Lynn 2448

 22-- MacGregor 466-

 221- Wills 5-9-

 221- White 4962

 221- Park 3764

 221- Thompson 4--1

 221- Courtney 4-27

 221- Clark 4--8

 221- Parker 2-1-

 221- Wilkins 3991

 351- Dexter 4773

 351- Brooks 3-82

 352- Donelson 3769

 353- Smith 3341

 353- Smith 22-9

 45-- Zander 2174

 45-- Voltmer 3222

 45-- Wooding 3118

 46-- Thompson 2437

 46-- Gallway 1-34

 46-- Crane 3433

 46-- Thompson 4456

 46-- Carlson 2-96

 46-- Spade 2299

 46-- Loren 3199

 46-- Wilder 2424

 46-- Sampson 3288

 5--- Ferguson 51-3

 5--- Taylor 3449

 5--- Bennett 2466

 51-- Ferndale 3778

 51-- Jacobs 2598

 52-- Griffin 2894

 52-- Catlin 2145

 52-- Thurston 2781

 52-- Williams 3411

 52-- Robinson 4358

 62-- Cromwell 3841

 62-- Mills 1234

 62-- Anderson 2461

 62-- Bradley 4321

 62-- Roy 4--2

 62-- Baldwin 1--3

55 rows processed

W X

If your results do not match what you see above, check “Exercise 3-9 answer” on
page B-5 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

3-34 CA-IDMS SQL Self-Training Guide

3.7 Organizing data

Identifying columns by number: Each column named after SELECT has an
assumed number corresponding to the order in which it is named. You can use this
number to identify columns in the ORDER BY clause:

select emp_id, emp_fname, emp_lname from employee

 b b b

 1 2 3

order by 3;

How it's done: Earlier you wrote a SELECT statement to display the skills
available in the company in numeric order by skill ID. Modify the ORDER BY clause
in that statement to identify the column by number rather than by name:

select skill_id, skill_name

 from skill

order by 1;

The result looks like this:

S T
 SKILL_ID SKILL_NAME

 -------- ----------

 1--- Management

 1-3- Acct Mgt

 3-65 Electronics

 3-88 Brake work

 3333 Bodywork

 425- Data Entry

 437- Filing

 441- Typing

 442- Telephone

 443- Interviewing

 4444 Assembly

 449- Gen Ledger

 513- Basic Math

 516- Calculus

 518- Statistics

 52-- Gen Acctng

 53-9 Appraising

 542- Writing

 543- Mktng Writing

 55-- Gen Mktng

 647- Window Installation

665- Diesel Engine Repair

 6666 Billing

667- Gas Engine Repair

 677- Purchasing

 7--- Sales

 26 rows processed

W X

You must refer to a column by number when the column is a calculated column like
salary_amount / 52.

You can also use a column number when you select all columns from a table with
SELECT *.

Chapter 3. Retrieving Data 3-35

3.7 Organizing data

 3.7.4 Exercise 3-10

Now you try it: Enter a SELECT statement to list employee IDs, salary, bonus
percentage, and bonus paid, taken from the POSITION table. Sort the result by the
bonus paid. Use numbers to identify the columns in the ORDER BY clause and
rename the columns appropriately.

The result looks like this:

S T
 EMPLOYEE BASE SALARY BONUS PERCENTAGE BONUS PAID

 -------- ----------- ---------------- ----------

 4--1 36921.-- -.23- 8491.83---

 466- 364--.-- -.25- 91--.-----

 3991 42-16.-- -.235 9873.76---

 5-9- 48568.48 -.2-5 9956.5384-

 3767 5-44-.5- -.23- 116-1.315--

 3764 54184.-- -.26- 14-87.84---

 2448 7-72-.-- -.255 18-33.6----

 2-1- 7644-.-- -.275 21-21.-----

 3-82 68-16.-- <null> <null>

 2424 <null> <null> <null>

 2246 29536.-- <null> <null>

 2246 59488.-- <null> <null>

 1-34 <null> <null> <null>

 .

 .

 .

61 rows processed

W X

If your results do not match what you see above, check “Exercise 3-10 answer” on
page B-6 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Another way to name the column: You've seen that you can use ORDER BY
with column names and column numbers. You can also use ORDER BY with a
column heading you named with AS.

How it's done: The Human Resources department needs to see a list of all
consultants ordered by the hourly compensation taken from the lowest rate to the
highest. You now have three ways you can retrieve this information. Try all three:

select con_id as "Consultant",

rate as "Hourly Rate"

 from consultant

order by rate desc;

select con_id as "Consultant",

rate as "Hourly Rate"

 from consultant

order by 2 desc;

select con_id as "Consultant",

rate as "Hourly Rate"

 from consultant

order by "Hourly Rate" desc;

3-36 CA-IDMS SQL Self-Training Guide

3.7 Organizing data

For each of these, the result looks like this:

S T
CONSULTANT HOURLY RATE

 ---------- -----------

 9--- 148.--

 9388 76.--

 9443 5-.--

 9439 47.--

4 rows processed

W X

You can use any of these methods or a combination of them in an ORDER BY clause.

Chapter 3. Retrieving Data 3-37

3.8 Review

 3.8 Review

Choose the correct answers for the questions below. More than one answer can apply
for each question.

1. How many columns would be retrieved by the following statement:

select R from sample_table;

 a. One

 b. Five

 c. All

2. How can you limit the number of columns returned by your SELECT statement?

a. Use a FROM clause

b. List the columns you want to see

c. Use * after SELECT

d. Leave out the * between SELECT and FROM

3. How can you give heading names to columns?

a. Put a comma after the column name and specify the heading

b. Use AS after the column name and specify the heading

c. Use the heading in place of the column name

4. Given a table called SUPPLY_PRICE and a column in that table called
PART_NUMBER, which of the following statements will find the number of
unique part numbers in the table?

a. select part_number from supply_price;

b. select * from supply_price;

c. select distinct part_number from supply_price;

d. select part_number distinct from supply_price;

5. How can you name the column you want to sort by?

a. Use the column name

b. Use the heading name

c. Use the table name

d. Use the column number

To check your answers, see “Review answers” on page B-6.

3-38 CA-IDMS SQL Self-Training Guide

3.9 Scenarios

 3.9 Scenarios

Create the appropriate statements online to retrieve the needed data:

1. You need to list all jobs the company has for a government report. The report
should show job ID, job title, and minimum and maximum rate for the job. Use
the JOB table, checking Appendix C, “Table Descriptions” for table descriptions.

2. The report you just created (in Scenario 1) has all the necessary information but is
difficult to read because it is not sorted. Modify the SELECT statement to create
the same report sorted by job title.

3. Periodically, a company list is produced showing each department and all
employees assigned to that department. This list should be sorted first by
department ID and then by employee ID within each department. Display
department ID, employee ID, and employee last name. Create the appropriate
SQL SELECT statement to produce this list using the EMPLOYEE table.

4. The report you just created is very useful except that the headings are difficult to
understand. Rewrite the statement so that the column headings are "Department",
"Employee ID", and "Last Name".

5. The Human Resources department needs a report of all employees listing ID,
amount of vacation accrued for each employee, and vacation accrued incremented
by 32 hours, in order to see whether any employees will have over the maximum
allowable vacation once the accruals have been applied. Create this report using
the BENEFITS table. Name the column headings appropriately, and order the
report by employee ID.

To check your answers, see “Scenario answers” on page B-6.

Chapter 3. Retrieving Data 3-39

3-40 CA-IDMS SQL Self-Training Guide

Chapter 4. Using Conditional Retrieval

4.1 About this chapter . 4-3
4.2 The WHERE clause . 4-4
4.3 Comparison operators and keywords in predicates 4-5
4.4 Using comparison operators in predicates 4-6

4.4.1 Exercise 4-1 . 4-7
4.4.2 Exercise 4-2 . 4-8
4.4.3 Exercise 4-3 . 4-9
4.4.4 Exercise 4-4 . 4-9

4.5 Using keywords in predicates . 4-11
4.5.1 Exercise 4-5 . 4-11
4.5.2 Exercise 4-6 . 4-13
4.5.3 Exercise 4-7 . 4-15
4.5.4 Exercise 4-8 . 4-17
4.5.5 Exercise 4-9 . 4-19
4.5.6 Exercise 4-10 . 4-19

4.6 Using calculated values in predicates . 4-20
4.6.1 Exercise 4-11 . 4-21

4.7 Combining predicates . 4-22
4.7.1 Exercise 4-12 . 4-22

4.8 Review . 4-27
4.9 Scenarios . 4-29

Chapter 4. Using Conditional Retrieval 4-1

4-2 CA-IDMS SQL Self-Training Guide

4.1 About this chapter

4.1 About this chapter

Goal: When you have completed this chapter, you will be able to create SQL
statements to retrieve selected rows of data from a table and to use multiple predicates
in a WHERE clause. You will also understand the order in which multiple conditions
are evaluated.

Summary: Usually you want to retrieve only some rows from a table just as you
want to retrieve only some columns in that table. You have already seen how to limit
the number of columns displayed. Now you will see how to limit the number of rows
displayed using a WHERE clause. A WHERE clause specifies criteria used in
selecting rows to be retrieved.

Chapter 4. Using Conditional Retrieval 4-3

4.2 The WHERE clause

4.2 The WHERE clause

You can screen the data being retrieved by using the WHERE clause in a SELECT
statement. In the WHERE clause, you specify selection criteria. The WHERE clause
filters out rows that do not meet the selection criteria. The WHERE clause follows the
FROM clause:

select ...

 from ...

 where ...

order by ...;

Components of the WHERE clause: The WHERE clause is made up of two
components:

■ The keyword WHERE

■ A search condition

A search condition is made up of predicates. In general, predicates compare values to
one another. If the values meet the comparison, the row is selected.

4-4 CA-IDMS SQL Self-Training Guide

4.3 Comparison operators and keywords in predicates

4.3 Comparison operators and keywords in predicates

You use a predicate to compare one value to another. The values compared in the
predicate must be of compatible data types. For example, a column defined as a
character data type cannot be compared to a column defined as an integer data type
even though the character string contains numbers.

Check the data type when comparing: The table layout specifies whether the
column you want to compare is defined as a character data type. A column may
appear to contain numeric data when you look at the values stored in the database,
although it is actually defined as character. For example, the SKILL_LEVEL column
in the EXPERTISE table is defined as a character column but usually contains numeric
data.

Entering character literals: Use single quotation marks if you use a character
literal such as 'Smith' and enter the literal with uppercase and lowercase letters exactly
as you expect it exists in the database.

Ways you can compare values: You can use these operators to compare values:

You can use these keywords to compare values:

Comparison
operator

Meaning

= Equal to

<> Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Keyword Meaning

IS NULL Checks whether a value is null

BETWEEN Locates values within a range of values

IN Locates values identified by specific values in a list

LIKE Retrieves rows based on character combinations in a nonnumeric
column

Chapter 4. Using Conditional Retrieval 4-5

4.4 Using comparison operators in predicates

4.4 Using comparison operators in predicates

The search value in the predicate can be:

■ A numeric literal (for example, vac_accrued >= 40).

■ A character literal (for example, emp_lname = 'Smith').

You can also use two column names in a predicate (for example, vac_taken <=
vac_accrued).

The column name you use in the WHERE clause need not appear in the SELECT
column list.

How it's done: The Human Resources department needs to see a list of all
employees and the number of vacation hours they have accrued in 1999. The
BENEFITS table contains this information. Enter:

select emp_id, vac_accrued

 from benefits

where fiscal_year = 2���;

The result looks like this:

4-6 CA-IDMS SQL Self-Training Guide

4.4 Using comparison operators in predicates

S T
EMP_ID VAC_ACCRUED

 ------ -----------

 3411 68.--

 4773 68.--

 2-1- 92.75

 3338 68.--

 2246 92.5-

 1-34 92.5-

 2424 92.5-

 3767 68.--

 3449 68.--

 3-82 68.--

 3341 68.--

 466- 68.--

 22-9 92.5-

 2894 68.--

 4--1 68.--

 5-9- 46.--

 1765 92.5-

 4456 68.--

 3991 68.--

 3778 68.--

 4358 68.--

 4962 68.--

 218- 92.5-

 21-6 92.5-

 3222 68.--

 4--2 68.--

 2437 68.--

 2-96 92.5-

 2--4 92.5-

 51-3 46.--

 5--8 46.5-

 4321 68.--

 2598 6-.--

 3764 68.--

 2448 68.--

 2461 68.--

 1--3 92.--

 1234 92.--

 4-27 68.--

 2466 92.5-

 2174 92.--

 2781 68.--

 37-4 68.--

 4--8 68.--

 3433 68.--

 3288 68.--

 3841 68.--

 47-3 46.75

 3294 68.--

 3769 68.--

 3118 68.--

51 rows processed

W X

 4.4.1 Exercise 4-1

Now you try it: The manager of the Marketing department is looking at a resource
plan that assigns employee 5103 to a project coming up. However, the manager
doesn't know who employee 5103 is.

Create a SELECT statement to retrieve all rows in the EMPLOYEE table that have an
employee with an ID of 5103. Display employee ID and first and last name.

Chapter 4. Using Conditional Retrieval 4-7

4.4 Using comparison operators in predicates

The result looks like this:

S T
EMP_ID EMP_FNAME EMP_LNAME

 ------ --------- ---------

 51-3 Adele Ferguson

1 row processed

W X

If your results do not match what you see above, check “Exercise 4-1 answer” on
page B-10 for the correct SQL syntax.

Why do you see only one row?

The employee ID is a unique key, so there is only one employee with this ID.

 4.4.2 Exercise 4-2

Try another: The new company fiscal year is approaching and the Accounting
department's budget director is compiling some salary statistics.

The budget director needs a list of employee IDs, job IDs, and salaries where the
salary is greater than $100,000. The POSITION table contains this information.

The result looks like this:

S T
 EMP_ID JOB_ID SALARY_AMOUNT

 ------ ------ -------------

 2894 6-21 111593.--

 3222 6--4 11-448.--

 1234 8--1 117832.68

 1--3 9--1 146432.--

 4 rows processed

W X

If your results do not match what you see above, check “Exercise 4-2 answer” on
page B-10 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

4-8 CA-IDMS SQL Self-Training Guide

4.4 Using comparison operators in predicates

 4.4.3 Exercise 4-3

And another: Commonwealth Auto has employees who live in several different
communities. The Accounting department needs to know which employees live in
Boston because a city tax is being levied on those residents and the payroll must be
adjusted.

Use the EMPLOYEE table to write a SELECT statement that selects all employees
who live in Boston. Type in the value exactly as you expect to find it in the table,
using uppercase and lowercase letters. Enclose the value in quotes because CITY is
defined as a character column. Display employee ID, first and last name, and city and
order the result by employee ID.

The result looks like this:

S T
EMP_ID EMP_FNAME EMP_LNAME CITY

------ --------- --------- ----

 1--3 James Baldwin Boston

 2-1- Cora Parker Boston

 2437 Henry Thompson Boston

 3411 Catherine Williams Boston

 3841 Michelle Cromwell Boston

 4962 Peter White Boston

6 rows processed

W X

If your results do not match what you see above, check “Exercise 4-3 answer” on
page B-10 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

 4.4.4 Exercise 4-4

Try it using NOT: Use NOT following the word WHERE to select rows that do not
meet the search condition.

Employees who do not live in Boston are not affected by the new tax. Create another
SELECT statement to retrieve all employees who do not live in Boston. Use the
keyword NOT after WHERE. Display employee ID, first and last name, and city.

The result looks like this:

Chapter 4. Using Conditional Retrieval 4-9

4.4 Using comparison operators in predicates

S T
EMP_ID EMP_FNAME EMP_LNAME CITY

------ --------- --------- ----

 2299 Samuel Spade Canton

4773 Janice Dexter Medford

 3338 Mark White Canton

 2246 Marylou Hamel Medford

 1-34 James Gallway Stoneham

2424 Ronald Wilder Natick

 3767 Frank Lowe Natick

 2898 Mary Umidy Medford

 3449 Cynthia Taylor Concord

 3-82 John Brooks Camden

 3341 Carl Smith Newton

 3199 Martin Loren Grover

 466- Bruce MacGregor Camden

 22-9 Michael Smith Brookline

2894 William Griffin Taunton

 4--1 Jason Thompson Natick

 5-9- Stephen Wills Canton

 1765 David Alexander Grover

 4456 Thomas Thompson Newton

2145 Martin Catlin Wilmington

 3991 Fred Wilkins Taunton

 3778 Jane Ferndale Medford

 4358 Judith Robinson Wilmington

 218- Joan Albertini Medford

 21-6 Susan Widman Medford

 3222 Louise Voltmer Brookline

 4--2 Linda Roy Wilmington

 2-96 Thomas Carlson Brookline

2--4 Eleanor Johnson Medford

 51-3 Adele Ferguson Brookline

5--8 Timothy Fordman Brookline

 4321 George Bradley Grover

 2598 Mary Jacobs Camden

 3764 Deborah Park Brookline

 2461 Alice Anderson Medford

 2448 David Lynn Natick

 1234 Thomas Mills Brookline

 2466 Patricia Bennett Medford

 4-27 Cecile Courtney Natick

 2174 Jonathan Zander Brookline

 2781 Joseph Thurston Stoneham

 37-4 Richard Moore Dedham

 4--8 Robert Clark Brookline

 3433 Herbert Crane Newton

 3288 Ralph Sampson Newton

 47-3 Martin Halloran Brookline

3294 Carolyn Johnson Brookline

 3118 Alan Wooding Canton

 3769 Julie Donelson Grover

 49 rows processed

W X

If your results do not match what you see above, check “Exercise 4-4 answer” on
page B-10 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

What is another way of getting this information?

You could have used <> (not equal) instead of the keyword NOT.

4-10 CA-IDMS SQL Self-Training Guide

4.5 Using keywords in predicates

4.5 Using keywords in predicates

You have been using comparison operators in predicates to compare one value to
another. You can also use keywords in predicates.

Testing for null values: You use the keyword IS NULL to retrieve rows for which
no value has been stored in the specified column.

How it's done: The company needs to have a list of employees who do not have a
home telephone so that the Human Resources department can get in touch with them
by other means in case of emergency.

To retrieve all employees who do not have a telephone, enter:

select emp_id, phone

 from employee

where phone is null;

The result looks like this:

S T
 EMP_ID PHONE

 ------ -----

 2299 <null>

 3411 <null>

 2-1- <null>

 3199 <null>

 2598 <null>

 4--8 <null>

 6 rows processed

W X

 4.5.1 Exercise 4-5

Now you try it: Only sales employees at Commonwealth Auto receive bonuses as
part of their earnings. Payroll wants a list of all employees who do not receive
bonuses.

Enter a SELECT statement to retrieve all employees from the POSITION table for
which the database does not have a bonus percentage. Display employee ID.

The result looks like this:

Chapter 4. Using Conditional Retrieval 4-11

4.5 Using keywords in predicates

S T
 EMP_ID

 3411

 3411

 4773

 3338

 2246

 2246

 1-34

 2424

 3767

 3449

 3-82

 3341

 466-

 22-9

 2894

 1765

 4456

 1765

 3991

 3778

 4358

 4962

 218-

 218-

 21-6

 3222

 4--2

 2437

 2-96

 2-96

 2--4

 2--4

 51-3

 5--8

 4321

 2598

 3764

 2461

 1234

 1--3

 4-27

 2466

 2174

 2781

 37-4

 4--8

 3433

 3288

 3841

 47-3

 3294

 3769

 3118

53 rows processed

W X

If your results do not match what you see above, check “Exercise 4-5 answer” on
page B-10 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

IS NOT NULL: Use IS NOT NULL to eliminate rows containing nulls in a specified
column.

4-12 CA-IDMS SQL Self-Training Guide

4.5 Using keywords in predicates

 4.5.2 Exercise 4-6

Now you try it: Commonwealth Auto needs to be able to reach employees in case
of emergency. The Human Resources department knows that not all employees have
telephones. They need to have a list of telephone numbers for those employees who do
have telephones.

Enter the SELECT statement to list all employees from the EMPLOYEE table who
have a telephone. Display employee ID, first and last name, and telephone.

The result looks like this:

S T
EMP_ID EMP_FNAME EMP_LNAME PHONE

------ --------- --------- -----

4773 Janice Dexter 5-83847566

 3338 Mark White 6179238844

 2246 Marylou Hamel 5-83457789

 1-34 James Gallway 6172251178

2424 Ronald Wilder 5-833477--

 3767 Frank Lowe 5-82844-94

 2898 Mary Umidy 617345886-

 3449 Cynthia Taylor 5-826845-8

 3-82 John Brooks 5-89273644

 3341 Carl Smith 6179658-99

 466- Bruce MacGregor 5-9234462-

 22-9 Michael Smith 6175563331

2894 William Griffin 5-88449--8

 4--1 Jason Thompson 5-82649956

 1765 David Alexander 5-87394772

 4456 Thomas Thompson 617966--89

2145 Martin Catlin 5-87486625

 3991 Fred Wilkins 5-8184-883

 3778 Jane Ferndale 617345--99

 4358 Judith Robinson 5-87488-11

4962 Peter White 617773228-

 218- Joan Albertini 5-83145366

 21-6 Susan Widman 5-83346364

 3222 Louise Voltmer 617663552-

 4--2 Linda Roy 5-884777-1

 2437 Henry Thompson 61792641-5

 2-96 Thomas Carlson 6175553643

2--4 Eleanor Johnson 5-89253998

 51-3 Adele Ferguson 61766--684

5--8 Timothy Fordman 61766422-9

 4321 George Bradley 5-874633--

 3764 Deborah Park 6179458377

 2461 Alice Anderson 5-83873664

 2448 David Lynn 5-82844736

 1--3 James Baldwin 6173295757

 1234 Thomas Mills 61766466-2

 2466 Patricia Bennett 5-894877-9

 4-27 Cecile Courtney 5-89445386

 2174 Jonathan Zander 6176633854

 2781 Joseph Thurston 6173286--8

 37-4 Richard Moore 617773944-

3841 Michelle Cromwell 6173298763

 3433 Herbert Crane 617865344-

 3288 Ralph Sampson 6179654443

 47-3 Martin Halloran 617664829-

3294 Carolyn Johnson 6175567551

 3118 Alan Wooding 5-83766984

 3769 Julie Donelson 5-8485-432

 49 rows processed

W X

Chapter 4. Using Conditional Retrieval 4-13

4.5 Using keywords in predicates

If your results do not match what you see above, check “Exercise 4-6 answer” on
page B-10 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

BETWEEN predicate: Use the BETWEEN predicate to specify a range of values
you are searching for. BETWEEN selects all rows that have values in a specified
column in between or equal to the starting or ending values of the specified range.

How it's done: Human Resources is interested in obtaining a list of employees who
have between 1 and 3 dependents being covered by their insurance plan.

To retrieve this data, enter:

select emp_id, num_dependents

 from coverage

where num_dependents between 1 and 3;

The result looks like this:

4-14 CA-IDMS SQL Self-Training Guide

4.5 Using keywords in predicates

S T
 EMP_ID NUM_DEPENDENTS

 ------ --------------

 2299 1

 3411 3

 3411 3

 3338 2

 2246 2

 2246 2

 3767 2

 3767 2

 3199 2

 3199 2

 2894 3

 2894 3

 5-9- 3

 4456 1

 1765 2

 1765 2

 4358 1

 4358 1

 3222 2

 2437 2

 2-96 1

 2-96 3

 2-96 3

 51-3 1

 51-3 1

 5--8 2

 5--8 2

 2598 1

 2448 3

 1--3 3

 1--3 3

 2781 2

 4--8 1

 37-4 3

 3433 1

 3433 1

 3433 1

 3288 1

 3288 1

 47-3 1

 47-3 1

 3118 1

 42 rows processed

W X

 4.5.3 Exercise 4-7

Now you try it: Human Resources is doing a salary comparison and needs some
information on jobs, employees, and salaries. They have asked you to show them all
employees whose salary is between $20,000 and $35,000.

What table holds this information?

The information is stored in the POSITION table.

Enter the appropriate SELECT statement.

The result looks like this:

Chapter 4. Using Conditional Retrieval 4-15

4.5 Using keywords in predicates

S T
 JOB_ID EMP_ID SALARY_AMOUNT

 ------ ------ -------------

 2-77 3338 22-48.84

 2-77 2246 29536.--

 3333 466- 24---.--

 3333 3991 27976.--

 3333 4962 3-68-.--

 2-77 21-6 2392-.--

 4-12 4--2 286-1.8-

 3333 3764 28912.--

 3333 4-27 28-81.4-

 3333 37-4 2288-.--

 3333 4--8 24441.--

 4-12 3841 338--.--

 2-77 47-3 24857.--

 13 rows processed

W X

If your results do not match what you see above, check “Exercise 4-7 answer” on
page B-10 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Use NOT BETWEEN to retrieve all rows that do not fall into the specified range.

IN predicate: You can compare a value to a list of values using the IN predicate.

How it's done: Human Resources needs to identify employees who reside in three
communities for potential car pooling. To do this, enter:

select emp_id, city

 from employee

where city in ('Camden', 'Brookline', 'Canton');

Enclose the list of values in parentheses and separate values with a comma.

The result looks like this:

4-16 CA-IDMS SQL Self-Training Guide

4.5 Using keywords in predicates

S T
 EMP_ID CITY

 ------ ----

 2299 Canton

 3338 Canton

 3-82 Camden

 466- Camden

 22-9 Brookline

 5-9- Canton

 3222 Brookline

 2-96 Brookline

 51-3 Brookline

 5--8 Brookline

 2598 Camden

 3764 Brookline

 1234 Brookline

 2174 Brookline

 4--8 Brookline

 47-3 Brookline

 3294 Brookline

 3118 Canton

 18 rows processed

W X

 4.5.4 Exercise 4-8

Now you try it: The Payroll department needs to identify employees whose salaries
are $41,600, $45,240, or $50,440 for tax rate purposes. Using the BENEFITS table,
write a SELECT statement to display employee ID and salary.

The result looks like this:

S T

 EMP_ID SALARY_AMOUNT

 ------ -------------

 4773 4524-.--

 3769 416--.--

 2 rows processed

W X

If your results do not match what you see above, check “Exercise 4-8 answer” on
page B-10 for the correct SQL syntax.

You can insert NOT before IN to identify values you do not want returned.

The LIKE predicate and masks: You can use the keyword LIKE and mask
characters to find a character string when you know or are concerned about only some
of the characters. Mask characters are symbols that serve as place holders for other
characters. For example, LIKE 'Th%' means everything beginning with Th. The % is
the mask specifying that any number of characters can follow.

This table shows the symbols you can use as mask characters:

Chapter 4. Using Conditional Retrieval 4-17

4.5 Using keywords in predicates

How it's done: The company nurse wants to identify all employees whose last
names begin with S in order to notify them that their yearly physical examination is
due. Enter:

select emp_lname

 from employee

where emp_lname like 'S%';

Enter the character string to be matched exactly as you expect to find it in the
database. Use uppercase and lowercase letters as necessary.

The result looks like this:

S T
EMP_LNAME

Sampson

Smith

Smith

Spade

4 rows processed

W X

Where to place mask characters: Mask characters can come anywhere in the
search string.

If you want to find all employees whose names contain mp, enter:

select emp_lname

 from employee

where emp_lname like '%mp%';

The result looks like this:

S T
EMP_LNAME

Sampson

Thompson

Thompson

Thompson

4 rows processed

W X

Mask Meaning

Percent (%) Specifies any number of unknown characters (including none)

Underscore (_) Specifies a single unknown character

4-18 CA-IDMS SQL Self-Training Guide

4.5 Using keywords in predicates

 4.5.5 Exercise 4-9

Now you try it: How would you display all departments associated with NEW
CARS?

The result looks like this:

S T
DEPT_ID DEPT_NAME

 ------- ---------

42-- LEASING - NEW CARS

221- SALES - NEW CARS

352- APPRAISAL NEW CARS

111- PURCHASING - NEW CARS

4 rows processed

W X

If your results do not match what you see above, check “Exercise 4-9 answer” on
page B-10 for the correct SQL syntax. Remember, result tables may be shortened in
this guide.

Use NOT in front of LIKE to search for rows containing all values except those that
match the mask.

 4.5.6 Exercise 4-10

Try another: Enter a SELECT statement to display all departments that are not
associated with associated with NEW CARS.

The result looks like this:

S T
DEPT_ID DEPT_NAME

 ------- ---------

112- PURCHASING - SERVICE

 49-- MIS

 5--- CORPORATE ACCOUNTING

 45-- HUMAN RESOURCES

 46-- MAINTENANCE

22-- SALES - USED CARS

 51-- BILLING

 62-- CORPORATE ADMINISTRATION

353- APPRAISAL - SERVICE

 6--- LEGAL

351- APPRAISAL - USED CARS

11-- PURCHASING - USED CARS

 52-- CORPORATE MARKETING

13 rows processed

W X

If your results do not match what you see above, check “Exercise 4-10 answer” on
page B-10 for the correct SQL syntax. Remember, result tables may be shortened in
this guide.

Chapter 4. Using Conditional Retrieval 4-19

4.6 Using calculated values in predicates

4.6 Using calculated values in predicates

You can use arithmetic expressions to calculate a value for a search condition. Use the
following symbols for arithmetic operations:

Remember that multiplication and division are performed first, from left to right, and
addition and subtraction second, from left to right. You can control the order in which
operations are performed by using parentheses to enclose the operations you want
performed first.

How it's done: As part of the salary review process, Human Resources needs to
identify all jobs where the difference between the maximum and minimum salaries is
greater than $10,000. To do this, use the JOB table and enter:

select job_id, job_title, min_rate,

max_rate, max_rate - min_rate

 from job

where max_rate - min_rate > 1----;

The result looks like this:

S T
JOB_ID JOB_TITLE MIN_RATE MAX_RATE (EXPR)

------ --------- -------- -------- ------

 8--1 Vice President 9----.-- 136---.-- 46---.--

 2-77 Purch Clerk 17---.-- 3----.-- 13---.--

 9--1 President 111---.-- 19----.-- 79---.--

 47-- Purch Agnt 33---.-- 6----.-- 27---.--

 3-29 Computer Operator 25---.-- 44---.-- 19---.--

 6-11 Manager - Acctng 594--.-- 121---.-- 616--.--

 413- Benefits Analyst 35---.-- 56---.-- 21---.--

 4666 Sr Mechanic 41---.-- 91---.-- 5----.--

 4123 Recruiter 35---.-- 56---.-- 21---.--

 5555 Salesperson 3----.-- 79---.-- 49---.--

 4-25 Writer - Mktng 31---.-- 5----.-- 19---.--

 4-23 Accountant 44---.-- 12----.-- 76---.--

 4734 Mktng Admin 25---.-- 62---.-- 37---.--

 511- CUST SER MGR 4----.-- 1-8---.-- 68---.--

 6--4 Manager - HR 66---.-- 138---.-- 72---.--

 5111 CUST SER REP 27---.-- 54---.-- 27---.--

 4-12 Admin Asst 21---.-- 44---.-- 23---.--

 2-55 PAYROLL CLERK 17---.-- 3----.-- 13---.--

 589- Appraisal Spec 45---.-- 7----.-- 25---.--

 3333 Sales Trainee 216--.-- 39---.-- 174--.--

 6-21 Manager - Mktng 76---.-- 15----.-- 74---.--

21 rows processed

W X

 Symbol Meaning

 * Multiplication

 / Division

+ Addition

 - Subtraction

4-20 CA-IDMS SQL Self-Training Guide

4.6 Using calculated values in predicates

 4.6.1 Exercise 4-11

Now you try it: The corporate planning group wants to know what projects have
been completed in less time than originally estimated.

Use the PROJECT table to identify the columns and display project ID as well as the
number of hours saved.

The result looks like this:

S T
PROJ_ID (EXPR)

------- ------

C2-3 58.5-

1 row processed

W X

If your results do not match what you see above, check “Exercise 4-11 answer” on
page B-11 for the correct SQL syntax.

Chapter 4. Using Conditional Retrieval 4-21

4.7 Combining predicates

 4.7 Combining predicates

You can combine predicates with AND and OR:

■ Use AND when all predicates must be true

■ Use OR when only one predicate must be true

The default order of evaluation is AND before OR. You can use parentheses to
override the default order.

How it's done: The Human Resources department needs to identify employees who
live in Camden, Brookline, or Canton and who have telephones in order to set up a
calling network. You created both of these search conditions earlier in this chapter.
Now you want to combine them.

To produce this list, enter:

select emp_id, city, phone

 from employee

where city in ('Camden', 'Brookline', 'Canton')
and phone is not null;

The result looks like this:

S T
EMP_ID CITY PHONE

 ------ ---- -----

 3338 Canton 6179238844

 3-82 Camden 5-89273644

 466- Camden 5-9234462-

 22-9 Brookline 6175563331

 5-9- Canton 5-83389935

 3222 Brookline 617663552-

 2-96 Brookline 6175553643

 51-3 Brookline 61766--684

 5--8 Brookline 61766422-9

 3764 Brookline 6179458377

 1234 Brookline 61766466-2

 2174 Brookline 6176633854

 47-3 Brookline 617664829-

 3294 Brookline 6175567551

 3118 Canton 5-83766984

15 rows processed

W X

 4.7.1 Exercise 4-12

Now you try it: Change this SELECT statement from AND to OR.

Your result looks like this:

4-22 CA-IDMS SQL Self-Training Guide

4.7 Combining predicates

S T
EMP_ID CITY PHONE

 ------ ---- -----

 2299 Canton <null>

 4773 Medford 5-83847566

 3338 Canton 6179238844

 2246 Medford 5-83457789

 1-34 Framingham 6172251178

 2424 Natick 5-833477--

 3767 Natick 5-82844-94

 2898 Medford 617345886-

 3449 Concord 5-826845-8

 3-82 Camden 5-89273644

 3341 Newton 6179658-99

 466- Framingham 5-9234462-

 22-9 Brookline 6175563331

 2894 Taunton 5-88449--8

 4--1 Natick 5-82649956

 5-9- Canton 5-83389935

 1765 Grover 5-87394772

 4456 Newton 617966--89

 2145 Wilmington 5-87486625

 3991 Taunton 5-8184-883

 3778 Medford 617345--99

 4358 Wilmington 5-87488-11

 4962 Boston 617773228-

 218- Medford 5-83145366

 21-6 Medford 5-83346364

 3222 Brookline 617663552-

 4--2 Wilmington 5-884777-1

 2437 Boston 61792641-5

 2-96 Brookline 6175553643

 2--4 Medford 5-89253998

 51-3 Brookline 61766--684

 5--8 Brookline 61766422-9

 4321 Grover 5-874633--

 2598 Camden <null>

 3764 Brookline 6179458377

 2461 Medford 5-83873664

 2448 Natick 5-82844736

 1--3 Boston 6173295757

 1234 Brookline 61766466-2

 2466 Medford 5-894877-9

 4-27 Natick 5-89445386

 2174 Brookline 6176633854

 2781 Stoneham 6173286--8

 37-4 Dedham 617773944-

 4--8 Brookline <null>

 3841 Boston 6173298763

 3433 Newton 617865344-

 3288 Newton 6179654443

 47-3 Brookline 617664829-

 3294 Brookline 6175567551

 3118 Canton 5-83766984

 3769 Grover 5-8485-432

 52 rows processed

W X

If your results do not match what you see above, check “Exercise 4-12 answer” on
page B-11 for the correct SQL syntax. Remember, result tables may be shortened in
this guide.

Compare the result of the first SELECT statement with the result of the second.

Chapter 4. Using Conditional Retrieval 4-23

4.7 Combining predicates

The first SELECT statement gives a more limited list because an employee must both
live in one of the three communities and have a telephone in order to be included in
the list.

The second SELECT statement results in a longer list because an employee must
either live in one of the three communities or have a telephone (and live anywhere) in
order to be included. Thus, the result table lists everyone who has a telephone and
everyone who lives in the three communities.

Try one with both AND and OR: You can have multiple predicates, connecting
them with either AND or OR.

The Human Resources department needs a list of employees who have a telephone and
live in Brookline and all employees who live in Boston regardless of whether they
have a telephone.

To produce this list, enter:

select emp_id, city, phone

 from employee

where phone is not null and city = 'Brookline'
or city = 'Boston';

The result looks like this:

S T
 EMP_ID CITY PHONE

 ------ ---- -----

 3411 Boston <null>

 2-1- Boston <null>

 22-9 Brookline 6175563331

 4962 Boston 617773228-

 3222 Brookline 617663552-

 2437 Boston 61792641-5

 2-96 Brookline 6175553643

 51-3 Brookline 61766--684

 5--8 Brookline 61766422-9

 3764 Brookline 6179458377

 1--3 Boston 6173295757

 1234 Brookline 61766466-2

 2174 Brookline 6176633854

 3841 Boston 6173298763

 47-3 Brookline 617664829-

 3294 Brookline 6175567551

16 rows processed

W X

Using parentheses: The default order of evaluation is AND before OR. You use
parentheses to override the default order of evaluation. Multiple search conditions
enclosed in parentheses are evaluated as a single search condition.

How it's done: If the Human Resources department wants a list of employees living
in Brookline or Boston who have a telephone, you would insert parentheses to group
the Brookline and Boston predicates. The parentheses specify that you want the OR
portion of the clause to be evaluated first:

4-24 CA-IDMS SQL Self-Training Guide

4.7 Combining predicates

select emp_id, city, phone

 from employee

where phone is not null

and (city = 'Brookline' or city = 'Boston');

The result looks like this:

S T
EMP_ID CITY PHONE

 ------ ---- -----

 22-9 Brookline 6175563331

 4962 Boston 617773228-

 3222 Brookline 617663552-

 2437 Boston 61792641-5

 2-96 Brookline 6175553643

 51-3 Brookline 61766--684

 5--8 Brookline 61766422-9

 3764 Brookline 6179458377

 1--3 Boston 6173295757

 1234 Brookline 61766466-2

 2174 Brookline 6176633854

 3841 Boston 6173298763

 47-3 Brookline 617664829-

 3294 Brookline 6175567551

14 rows processed

W X

Compare this result with the result from the previous statement. The previous
SELECT statement without parentheses listed employees who have a telephone and
who also live in Brookline as well as employees who live in Boston whether or not
they have a telephone.

The second SELECT statement with parentheses listed employees who live in either
Brookline or Boston and who have a telephone, no matter which community they live
in.

When you create a complex combination of predicates as in the last example, use
parentheses to group predicates and establish the order of evaluation.

The placement of parentheses: You've just seen that using parentheses can
make a difference in the order in which the predicates are evaluated.

Look at these two SELECT statements. They are exactly the same except for the
placement of the parentheses.

Enter both SELECT statements and compare the results:

1. select emp_id, phone, city, dept_id

 from employee

where phone is not null

or (city = 'Boston' and dept_id = 52--);

2. select emp_id, phone, city, dept_id

 from employee

where (phone is not null or city = 'Boston')

and dept_id = 52--;

Now take all parentheses out of the request.

Chapter 4. Using Conditional Retrieval 4-25

4.7 Combining predicates

How are the results different?

The first SELECT statement specifies that the employee must either live in Boston and
work in department 5200 or have a telephone in order to be on the list.

The second SELECT statement specifies that the employee must either have a
telephone or live in Boston. In either case, the employee must also work in department
5200 in order to be placed on the list.

If you take out all the parentheses, SQL evaluates the conditions in the same order as
for the first SELECT statement.

4-26 CA-IDMS SQL Self-Training Guide

4.8 Review

 4.8 Review

Choose the correct answers for the questions below. More than one answer can apply
for each question.

1. The clause that allows the user to specify a search condition that filters the rows
to be selected is:

a. The WHERE clause

b. The FROM clause

c. The SELECT clause

d. The AS clause

2. What are the components of the WHERE clause?

a. The keyword FROM

b. The keyword WHERE

c. A search condition

d. A table name

3. You can compare a character column to a:

 a. FROM clause

 b. Mask

 c. WHERE clause

 d. Table name

4. Masks are used with:

a. The IN predicate

b. The BETWEEN predicate

c. The LIKE predicate

d. The FROM clause

5. Which of the following are mask characters?

 a. #

 b. _

 c. *

 d. %

6. The IS NULL predicate causes:

a. Retrieval of rows where a column contains the value zero

b. Retrieval of rows where a column contains no value

c. No retrieval of rows

Chapter 4. Using Conditional Retrieval 4-27

4.8 Review

d. No retrieval of rows where all columns contain zero

7. Parentheses are used to:

a. Set up the sequence of arithmetic evaluation

b. Set up the sequence of evaluation of AND and OR with multiple
predicates

c. Set off table names

d. Set up alternate headings

To check your answers, see “Review answers” on page B-11.

4-28 CA-IDMS SQL Self-Training Guide

4.9 Scenarios

 4.9 Scenarios

Create the appropriate statements online to retrieve the needed data:

1. Periodically, a list is published giving divisions and their departments. A new
department was recently added to division D09, so a new list for that division is
needed. Use the DEPARTMENT table and show division code, department ID,
and department name. Order by department ID.

Hint: DIV_CODE is a character column.

2. All Commonwealth Auto employees whose last names begin with L and M are
due to have flu shots. The medical office needs to have the complete names of
these individuals and the department to which each is assigned. Sort the list by
last name. (Use the EMPLOYEE table.)

3. The Marketing department has a large project coming up and needs employees
who have at least a medium level of competence (greater than 02) in skill 3333.
Display employee ID and level of competence for each employee using the
EXPERTISE table.

Hint: SKILL_LEVEL is a character column.

4. In order to identify employees involved in media projects, the Human Resources
department needs a list of employees associated with a project ID that begins with
P (indicating media-related). Order the list by employee ID. (Use the
EMPLOYEE table to find this information.)

5. The budget group needs a list of employees who hold a position that pays less
than $25,000. Show employee ID and salary.

Hint: The POSITION table contains information about positions held in
Commonwealth Auto.

To check your answers, see “Scenario answers” on page B-12.

Chapter 4. Using Conditional Retrieval 4-29

4-30 CA-IDMS SQL Self-Training Guide

Chapter 5. Using Aggregate Functions

5.1 About this chapter . 5-3
5.2 Aggregate functions . 5-4

5.2.1 Exercise 5-1 . 5-5
5.2.2 Exercise 5-2 . 5-5
5.2.3 Exercise 5-3 . 5-6
5.2.4 Exercise 5-4 . 5-7
5.2.5 Exercise 5-5 . 5-8
5.2.6 Exercise 5-6 . 5-8
5.2.7 Exercise 5-7 . 5-9

5.3 Eliminating duplicate rows . 5-10
5.3.1 Exercise 5-8 . 5-10

5.4 Grouping information . 5-11
5.4.1 Exercise 5-9 . 5-12
5.4.2 Exercise 5-10 . 5-12

5.5 Using HAVING . 5-15
5.5.1 Exercise 5-11 . 5-15
5.5.2 Exercise 5-12 . 5-16

5.6 Renaming column headings . 5-17
5.6.1 Exercise 5-13 . 5-17

5.7 Review . 5-18
5.8 Scenarios . 5-19

Chapter 5. Using Aggregate Functions 5-1

5-2 CA-IDMS SQL Self-Training Guide

5.1 About this chapter

5.1 About this chapter

Goal: When you have completed this chapter, you will be able to use aggregate
functions to count rows of data and to calculate averages, sums, maximums, and
minimums for groups of data.

Summary: You can use the aggregate functions AVG, COUNT, MAX, MIN, and
SUM to perform calculations within your SELECT statement to summarize
information about groups of rows in a table.

Chapter 5. Using Aggregate Functions 5-3

5.2 Aggregate functions

 5.2 Aggregate functions

There are five aggregate functions. Except for COUNT, these functions operate on a
collection of values in one column of a table and produce a single result:

How to use aggregate functions: To use an aggregate function, you specify the
name of the function followed by the name of the column in parentheses, as in
SUM(SALARY_AMOUNT).

You can use the aggregate functions AVG, MAX, MIN, and SUM with a column
name (SALARY_AMOUNT) or, if you are using CA-IDMS/DB, you can use these
functions with an arithmetic expression (SALARY_AMOUNT/52) as well.

Where to use aggregate functions

■ Instead of a column name with SELECT

■ In a HAVING clause as a value in a predicate

AVG: The aggregate function AVG calculates the average value of all rows in a
specified column.

How it's done: The president of Commonwealth Auto wants to know the average
salary for all employees in the company. To produce this information, use the
POSITION table and enter:

select avg(salary_amount)
 from position;

The result looks like this:

S T
 (EXPR)

 511-1.16

1 row processed

W X

Function Meaning

AVG Returns the average of all values in the named column

COUNT Counts the number of rows that satisfy a condition

MAX Returns the highest value in the named column

MIN Returns the lowest value in the named column

SUM Returns the total of all values in the named column

5-4 CA-IDMS SQL Self-Training Guide

5.2 Aggregate functions

 5.2.1 Exercise 5-1

Now you try it: Use the COVERAGE table to write a SELECT statement to display
the average number of dependents for all employees in Commonwealth Auto. The
Human Resources department needs this information for statistical purposes.

The result looks like this:

S T
 (EXPR)

 1

1 row processed

W X

If your results do not match what you see above, check “Exercise 5-1 answer” on
page B-14 for the correct SQL syntax.

Data type: If the column being averaged has an integer data type, the result will be
an integer (that is, a whole number). Refer to the SQL reference manual for
your environment to learn how to convert an integer data type to a decimal
data type in the result of your query.

 5.2.2 Exercise 5-2

Using WHERE: Use the BENEFITS table to write a SELECT statement to display
the average vacation accrued in fiscal year 1999 for all employees in Commonwealth
Auto. The Human Resources department needs this information for statistical purposes.

The result looks like this:

S T
 (EXPR)

 121.-1

1 row processed

W X

If your results do not match what you see above, check “Exercise 5-2 answer” on
page B-14 for the correct SQL syntax.

COUNT: Use the aggregate function COUNT to count the number of rows in a
table.

You use an asterisk in parentheses after COUNT when you want all rows to be
counted. You use a column name in parentheses after COUNT when you want all
rows with a value in that column to be counted.

Chapter 5. Using Aggregate Functions 5-5

5.2 Aggregate functions

How it's done: Human Resources needs a total count of employees working at
Commonwealth Auto. To find this number, enter:

select count(�)
 from employee;

The result looks like this:

S T
 (EXPR)

 55

1 row processed

W X

Every row in the EMPLOYEE table was counted.

 5.2.3 Exercise 5-3

Now you try it: The Human Resources department would like to know how many
different types of skills there are in the company. Enter the appropriate statement to
determine the total number of skills in the SKILL table.

The result looks like this:

S T
 (EXPR)

 26

1 row processed

W X

If your results do not match what you see above, check “Exercise 5-3 answer” on
page B-14 for the correct SQL syntax.

Specifying a column name with COUNT: If you specify a column name with
COUNT, only the rows containing a value in that column are counted.

How it's done: Human Resources has made another request. They would like to
know how many employees have telephones in their homes. You can comply with this
request by creating a SELECT statement using COUNT and the column name PHONE
from the EMPLOYEE table:

select count(phone)
 from employee;

The result looks like this:

5-6 CA-IDMS SQL Self-Training Guide

5.2 Aggregate functions

S T
 (EXPR)

 49

1 row processed

W X

There were fewer rows returned with this request than there were when you specified
COUNT(*). This time, COUNT counted only the rows that had a telephone number.
It did not count the rows that contain a null value for PHONE. When you used
COUNT(*), all rows are counted.

 5.2.4 Exercise 5-4

Using WHERE: How many employees in department 5200 have telephones? Add a
WHERE clause to your previous statement to find out.

The result looks like this:

S T
 (EXPR)

 4

1 row processed

W X

If your results do not match what you see above, check “Exercise 5-4 answer” on
page B-14 for the correct SQL syntax.

MAX: Use the aggregate function MAX (maximum) to determine the highest value
in a specified column.

How it's done: The Human Resources department would like to know the highest
salary in the company. Salaries are stored in the POSITION table. To show this
information, enter:

select max(salary_amount)
 from position;

The result looks like this:

S T
 (EXPR)

 146432.--

1 row processed

W X

Chapter 5. Using Aggregate Functions 5-7

5.2 Aggregate functions

 5.2.5 Exercise 5-5

Now you try it: Human Resources also needs to know the highest salary held for
job 3333. Enter an appropriate SELECT statement using a WHERE clause.

The result looks like this:

S T
 (EXPR)

 3-68-.--

1 row processed

W X

If your results do not match what you see above, check “Exercise 5-5 answer” on
page B-14 for the correct SQL syntax.

MIN: Use the aggregate function MIN (minimum) to determine the lowest value in a
specified column.

How it's done: Human Resources needs to determine the lowest salary in the
company. To obtain this, enter:

select min(salary_amount)
 from position;

The result looks like this:

S T
 (EXPR)

 22--.--

1 row processed

W X

 5.2.6 Exercise 5-6

Now you try it: The Human Resources department is concerned that the company
have a healthy group of employees. They need to see the smallest amount of sick
time taken. The BENEFITS table contains this information.

The result looks like this:

S T
 (EXPR)

 -.--

1 row processed

W X

5-8 CA-IDMS SQL Self-Training Guide

5.2 Aggregate functions

If your results do not match what you see above, check “Exercise 5-6 answer” on
page B-14 for the correct SQL syntax.

SUM: Use the aggregate function SUM to total numeric columns.

How it's done: The budget group in the Accounting department needs to allocate
funds for next year's budget based on this year's salaries.

To obtain a sum of all salaries, enter:

select sum(salary_amount)
 from position;

The result looks like this:

S T
 (EXPR)

 2555-58.42

1 row processed

W X

 5.2.7 Exercise 5-7

Now you try it: Also as part of the budget process, the budget group needs to
identify all vacation hours taken. (This information is in the BENEFITS table.)

Enter a statement to display this sum.

The result looks like this:

S T
 (EXPR)

 17469.5-

1 row processed

W X

If your results do not match what you see above, check “Exercise 5-7 answer” on
page B-14 for the correct SQL syntax.

Aggregate functions and null values: There may be null values in columns
included in a calculation. Aggregate functions ignore rows where a null value is
found.

Chapter 5. Using Aggregate Functions 5-9

5.3 Eliminating duplicate rows

5.3 Eliminating duplicate rows

You can eliminate duplicate rows when using SUM, AVG, and COUNT by using
DISTINCT. This causes the duplicate rows to be eliminated before the aggregate
function is applied.

Using DISTINCT: If you use DISTINCT, you must name a column explicitly; you
cannot use an arithmetic expression.

How it's done: Put DISTINCT immediately before the column name.

Count the number of communities represented by the employees at Commonwealth
Auto by entering:

select count(distinct city)
 from employee;

The result looks like this:

S T
 (EXPR)

 13

1 row processed

W X

 5.3.1 Exercise 5-8

Now you try it: Count the number of different projects on which at least one person
is working.

What table do you need to use?

You'll find this information in the CONSULTANT table.

The result looks like this:

S T
 (EXPR)

 1

1 row processed

W X

If your results do not match what you see above, check “Exercise 5-8 answer” on
page B-14 for the correct SQL syntax.

5-10 CA-IDMS SQL Self-Training Guide

5.4 Grouping information

 5.4 Grouping information

You can use aggregate functions to display information for groups of rows rather than
for a whole table. For example, the president wants to know the average salary for
employees assigned to each job rather than the average salary for all employees in the
whole company. The POSITION table, where the salary information is maintained, has
more than one row for each job. In order to retrieve the information for the president,
you need to group all rows with the same job ID and then find the average salary for
that group.

Using GROUP BY: To summarize information for groups of rows, such as all
employees who have the same job ID, use the GROUP BY clause. The GROUP BY
clause indicates which columns contain values to be grouped together.

How it's done: To find the average salary for employees by job, use the GROUP
BY clause and enter:

select job_id, avg(salary_amount)

 from position

group by job_id;

The result looks like this:

S T
 JOB_ID (EXPR)

 ------ ------

 2-51 <null>

 2-53 <null>

 2-77 23672.56

 3333 2313-.-5

 4-12 37546.8-

 4-23 74776.--

 4-25 43888.--

 4123 49921.76

 413- 45241.94

 456- <null>

 4666 8528-.--

 47-- 53477.38

 4734 55744.75

 511- 56977.8-

 5555 54738.99

 589- 53893.16

 6--4 11-448.--

 6-11 94953.52

 6-21 111593.--

 8--1 117832.68

 9--1 146432.--

 21 rows processed

W X

The GROUP BY clause grouped the rows of data by job and then AVG took the
average salary for each group. For example, nine salaries are averaged for JOB_ID
3333. Three jobs have null for an average salary because they have only hourly
employees.

Chapter 5. Using Aggregate Functions 5-11

5.4 Grouping information

 5.4.1 Exercise 5-9

Now you try it: For statistical purposes, you need to know the number of
employees in each department. Enter a SELECT statement to retrieve this information
from the EMPLOYEE table.

The result looks like this:

S T
DEPT_ID (EXPR)

------- ------

 11-- 3

 111- 2

 112- 4

 22-- 5

 221- 8

 351- 2

 352- 1

 353- 2

 45-- 3

 46-- 9

 5--- 3

 51-- 2

 52-- 5

 62-- 6

14 rows processed

W X

If your results do not match what you see above, check “Exercise 5-9 answer” on
page B-14 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

 5.4.2 Exercise 5-10

Try another: The budget group needs to identify the total salaries for each job in
order to determine salary budgets for next year.

Using the POSITION table, enter a SELECT statement to show the sum of salaries for
employees by job. Display job ID and sum for each job.

The result looks like this:

5-12 CA-IDMS SQL Self-Training Guide

5.4 Grouping information

S T
 JOB_ID (EXPR)

 ------ ------

 2-51 <null>

 2-53 <null>

 2-77 118362.84

 3333 2-817-.5-

 4-12 15-187.2-

 4-23 74776.--

 4-25 43888.--

 4123 49921.76

 413- 45241.94

 456- <null>

 4666 8528-.--

 47-- 267386.9-

 4734 111489.5-

 511- 56977.8-

 5555 49265-.98

 589- 269465.8-

 6--4 11-448.--

 6-11 94953.52

 6-21 111593.--

 8--1 117832.68

 9--1 146432.--

 21 rows processed

W X

If your results do not match what you see above, check “Exercise 5-10 answer” on
page B-14 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Things to remember when using GROUP BY

■ You can use GROUP BY with any aggregate function

■ You can specify more than one column in the GROUP BY clause

■ Columns listed in the SELECT statement that are not part of the calculation by an
aggregate function must be identified in the GROUP BY clause

Using ORDER BY with aggregate functions: When you want to sort a result
table based on an aggregate function, you must specify the aggregate function by
number (or heading name) rather than specifying the function itself.

How it's done: Earlier you found the average salary for employees by job using
GROUP BY. To sort this result by the average salary, enter:

select job_id, avg(salary_amount)

 from position

group by job_id

order by 2;

The result looks like this:

Chapter 5. Using Aggregate Functions 5-13

5.4 Grouping information

S T
 JOB_ID (EXPR)

 ------ ------

 3333 2313-.-5

 2-77 23672.56

 4-12 37546.8-

 4-25 43888.--

 413- 45241.94

 4123 49921.76

 47-- 53477.38

 589- 53893.16

 5555 54738.99

 4734 55744.75

 511- 56977.8-

 4-23 74776.--

 4666 8528-.--

 6-11 94953.52

 6--4 11-448.--

 6-21 111593.--

 8--1 117832.68

 9--1 146432.--

 2-53 <null>

 456- <null>

 2-51 <null>

 21 rows processed

W X

5-14 CA-IDMS SQL Self-Training Guide

5.5 Using HAVING

 5.5 Using HAVING

You can add a search condition to use with an aggregate function.

The HAVING clause allows you to search for a particular condition within each group.
HAVING takes the same predicates as WHERE. The clause must specify an
aggregate function because it applies to summary rows only. You use a HAVING
clause to eliminate groups from the result, just as you use a WHERE clause to
eliminate rows.

You can have both a WHERE clause and a HAVING clause in your SELECT
statement.

How it's done: The company is concerned that there are several departments with
only a very few employees. To display those departments that have fewer than three
employees, enter:

select dept_id, count(emp_id)

 from employee

group by dept_id

having count(emp_id) < 3;

The result looks like this:

S T
DEPT_ID (EXPR)

------- ------

 111- 2

 351- 2

 352- 1

 353- 2

 51-- 2

5 rows processed

W X

 5.5.1 Exercise 5-11

Now you try it: Some Commonwealth Auto employees live in the same community.
Since the company is encouraging car pooling, the car pooling group needs to know
which communities have more than two people living there.

Enter a SELECT statement to list the name of the community and the number of
employees living in that community. Show only those communities that have more
than two employees. This information is contained in the EMPLOYEE table.

The result looks like this:

Chapter 5. Using Aggregate Functions 5-15

5.5 Using HAVING

S T
CITY (EXPR)

---- ------

Boston 6

Brookline 11

Camden 3

Canton 4

Grover 4

Medford 9

Natick 5

Newton 4

Wilmington 3

9 rows processed

W X

If your results do not match what you see above, check “Exercise 5-11 answer” on
page B-14 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

 5.5.2 Exercise 5-12

Try another: The budget director has given you another request. She needs to see
which jobs have an average salary greater than $25,000. Use the POSITION table to
write the appropriate SELECT statement using HAVING and display the job ID and
the average salary amount.

The result looks like this:

S T
 JOB_ID (EXPR)

 ------ ------

 4-12 37546.8-

 4-23 74776.--

 4-25 43888.--

 4123 49921.76

 413- 45241.94

 4666 8528-.--

 47-- 53477.38

 4734 55744.75

 511- 56977.8-

 5555 54738.99

 589- 53893.16

 6--4 11-448.--

 6-11 94953.52

 6-21 111593.--

 8--1 117832.68

 9--1 146432.--

 16 rows processed

W X

If your results do not match what you see above, check “Exercise 5-12 answer” on
page B-15 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

5-16 CA-IDMS SQL Self-Training Guide

5.6 Renaming column headings

5.6 Renaming column headings

Remember that you can request new headings for the result table. This is particularly
useful when you use aggregate functions because the default heading is not
meaningful.

 5.6.1 Exercise 5-13

Now you try one: Use the statement above, and rename the column with the
aggregate function. Use the AS keyword, and make the heading "Average Salary".

The result looks like this:

S T
 JOB_ID AVERAGE SALARY

 ------ --------------

 4-12 37546.8-

 4-23 74776.--

 4-25 43888.--

 4123 49921.76

 413- 45241.94

 4666 8528-.--

 47-- 53477.38

 4734 55744.75

 511- 56977.8-

 5555 54738.99

 589- 53893.16

 6--4 11-448.--

 6-11 94953.52

 6-21 111593.--

 8--1 117832.68

 9--1 146432.--

 16 rows processed

W X

If your results do not match what you see above, check “Exercise 5-13 answer” on
page B-15 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Chapter 5. Using Aggregate Functions 5-17

5.7 Review

 5.7 Review

Fill in the blank with the correct term:

1. You use ______ to perform calculations within a SELECT statement.

2. An aggregate function can be used instead of a column name with ______ or in
the _______ clause.

3. When the aggregate function AVG encounters a null value, it _______ the row.

4. The _______ clause acts as a search condition with an aggregate function.

5. You rename an aggregate function column heading by using ______ and the
heading you want.

To check your answers, see “Review answers” on page B-15.

5-18 CA-IDMS SQL Self-Training Guide

5.8 Scenarios

 5.8 Scenarios

Create the appropriate statements online to retrieve the needed data:

1. In order to plan for the Christmas party for Commonwealth Auto, the Human
Resources department needs a count of employees by department. (The
EMPLOYEE table contains this information.)

2. As part of its salary research, the Human Resources department needs to know the
minimum and maximum salaries being earned for each job ID in the company.
(Use the POSITION table.)

3. Upper management needs to know how many subordinate employees there are for
each manager in order to evaluate the span of control within the company. The
EMPLOYEE table contains this information.

4. A project is coming up that requires project members having the skill ID 3333
(body work). The project leader needs to find out how many employees have a
skill level greater than 02 for this skill to see whether he needs to hire consultants
to staff the project. Keep in mind that the SKILL_LEVEL column contains
character data. (Use the EXPERTISE table.)

Hint: Use a WHERE clause with more than one predicate.

5. The Human Resources department is conducting research into salaries. They have
asked you for a report showing:

 ■ Job ID

■ Average salary by job

■ Minimum salary by job

■ Maximum salary by job

They need this report only for positions with a job ID less than 4000 (indicating
training and clerical positions) where the average salary is less than $25,000. Use
the POSITION table and rename the column headings so that the report makes
sense.

6. The training group is concerned that there are few people in the company who
have certain crucial skills. They have asked you to give them a report listing the
number of employees who have either a medium level of competence (02 or
above) for skill 3333 (body work) or a high level of competence (04) for skill
4444 (assembly). The report should list a skill only if there are more than two
employees that fit that category.

Hint: The column SKILL_LEVEL is a character column.

To check your answers, see “Scenario answers” on page B-15.

Chapter 5. Using Aggregate Functions 5-19

5-20 CA-IDMS SQL Self-Training Guide

Chapter 6. Accessing Multiple Tables

6.1 About this chapter . 6-3
6.2 What is a join operation? . 6-4

6.2.1 Joining tables on common columns . 6-4
6.2.1.1 Exercise 6-1 . 6-6

6.2.2 Qualifying a column name . 6-7
6.2.3 Qualifying a table name . 6-9

6.2.3.1 Exercise 6-2 . 6-9
6.2.4 Sorting the result . 6-10

6.2.4.1 Exercise 6-3 . 6-10
6.2.5 Additional search criteria in a join . 6-12
6.2.6 Exercise 6-4 . 6-12
6.2.7 Things to remember about joining tables 6-12

6.3 Joining a table to itself . 6-14
6.4 Using UNION . 6-16
6.5 Review . 6-18
6.6 Scenarios . 6-19

Chapter 6. Accessing Multiple Tables 6-1

6-2 CA-IDMS SQL Self-Training Guide

6.1 About this chapter

6.1 About this chapter

Goal: When you have completed this chapter, you will be able to create SQL
statements that retrieve data from more than one table.

Summary: Until now, you have been retrieving data from only one table at a time.
Often, however, the data you want resides in more than one table. For example, you
may want information on the department an employee works in as well as the
employee information itself. The join operation allows you to do this.

Chapter 6. Accessing Multiple Tables 6-3

6.2 What is a join operation?

6.2 What is a join operation?

A join is a type of select in which you request data from more than one table.

Look at the table descriptions for EMPLOYEE and DEPARTMENT in Appendix C,
“Table Descriptions.” The EMPLOYEE table carries employee information plus the
employee's department ID. The name of the department is not carried in this table.

If you want to see more information about the department, you need to look at the
DEPARTMENT table where you find the ID and name of the department. To display
both employee and department information at the same time, you need to access both
tables at once to join them.

Common columns: A join can occur when tables have a column in common.
Each table must have at least one column that corresponds to a column in at least one
other table in the join.

Usually these common columns are planned as part of the database design. In
Chapter 1, “Relational Database Concepts” on page 1-1 you read about foreign keys,
which are columns or combination of columns in one table corresponding to the
primary key of another table. These are planned common columns:

 EMPLOYEE

┌────────┬───────────┬───────────┬─────────┐

│EMP_ID │EMP_LNAME │EMP_FNAME │DEPT_ID │

├────────┼───────────┼───────────┼─────────┤

│2-96 │CARLSON │THOMAS │46-- │

│ │ │ │ │

│2437 │THOMPSON │HENRY │46-- │

│ │ │ │ │

│2598 │JACOBS │MARY │51-- │

└────────┴───────────┴───────────┴─┬───────┘

 │

 │

 │ DEPARTMENT

 │ ┌─────────┬─────────────────────┐

 └─────────┤DEPT_ID │DEPT_NAME │

 ├─────────┼─────────────────────┤

 │52-- │CORPORATE MARKETING │

 │ │ │

 │46-- │MAINTENANCE │

 │ │ │

 │51-- │BILLING │

 └─────────┴─────────────────────┘

6.2.1 Joining tables on common columns

To join two tables, you must associate one or more columns in one table to one or
more columns in a second table. The joining columns must:

■ Exist in both tables

■ Have data of equivalent type

■ Appear in the WHERE clause

6-4 CA-IDMS SQL Self-Training Guide

6.2 What is a join operation?

Normally, a row from one table is joined with a row from the other when the common
columns contain equal values.

Statement used: The statement used to join tables is composed of:

■ The columns to be displayed listed after SELECT

■ A FROM clause identifying the tables from which data is being retrieved

■ A WHERE clause indicating the column to be matched and any additional search
conditions

Note: If you are joining tables from different schemas, you must preface the table
name with the schema name.

In the WHERE clause, you specify a column name from one table, a comparison
operator (usually =), and a column name from the other table.

How it's done: Periodically, the Human Resources department produces a list of the
employees who head departments.

The ID of the employee who heads a particular department is found in the
DEPARTMENT table. The employee's name is found in the EMPLOYEE table. You
need to join these two tables to get all the information for the list.

To join the DEPARTMENT and EMPLOYEE tables based on the head of the
department, you use the DEPT_HEAD_ID column in the DEPARTMENT table and
the EMP_ID column in the EMPLOYEE table. The columns have different names,
but both contain employee IDs.

To join the two tables, enter:

select emp_id, emp_lname, emp_fname, dept_name

from employee, department
where dept_head_id = emp_id;

In this statement, all the join columns have unique names. The SELECT statement
specifies that you want to see employee ID, employee last name and first name, and
name of department. This information is going to come from two different tables.
The common columns are matched in the WHERE clause.

The result looks like this:

Chapter 6. Accessing Multiple Tables 6-5

6.2 What is a join operation?

S T
EMP_ID EMP_LNAME EMP_FNAME DEPT_NAME

 ------ --------- --------- ---------

 2--4 Johnson Eleanor PURCHASING - SERVICE

 1--3 Baldwin James LEASING - NEW CARS

 2466 Bennett Patricia MIS

 2-1- Parker Cora SALES - NEW CARS

 3769 Donelson Julie APPRAISAL NEW CARS

 2466 Bennett Patricia CORPORATE ACCOUNTING

 3222 Voltmer Louise HUMAN RESOURCES

 2-96 Carlson Thomas MAINTENANCE

 218- Albertini Joan SALES - USED CARS

 2598 Jacobs Mary BILLING

 2461 Anderson Alice CORPORATE ADMINISTRATION

 22-9 Smith Michael APPRAISAL - SERVICE

 1--3 Baldwin James LEGAL

 3-82 Brooks John APPRAISAL - USED CARS

 2246 Hamel Marylou PURCHASING - USED CARS

 2894 Griffin William CORPORATE MARKETING

 1765 Alexander David PURCHASING - NEW CARS

 17 rows processed

W X

 6.2.1.1 Exercise 6-1

Now you try it: The Human Resources department needs information about
divisions. They have asked you for a list of division descriptions and division heads by
name.

Enter a SELECT statement to display each division description and employee last and
first name.

What tables do you need to join?

You need to join the DIVISION and EMPLOYEE tables.

What are the common columns?

DIV_HEAD_ID in the DIVISION table and EMP_ID in the EMPLOYEE table are the
common columns.

The result looks like this:

S T
DIV_CODE DIV_NAME EMP_ID EMP_LNAME EMP_FNAME

-------- -------- ------ --------- ---------

D-6 SERVICE 4321 Bradley George

D-4 NEW CARS 2-1- Parker Cora

D-9 CORPORATE 1--3 Baldwin James

D-2 USED CARS 218- Albertini Joan

4 rows processed

W X

If your results do not match what you see above, check “Exercise 6-1 answer” on
page B-19 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

6-6 CA-IDMS SQL Self-Training Guide

6.2 What is a join operation?

Why include the join condition: Without the join condition in the WHERE
clause, the request would return a huge table containing every possible row
combination from the tables being joined. This type of join is called a Cartesian
product. It is very inefficient and contains a great deal of redundant information.

6.2.2 Qualifying a column name

In some cases, the join columns from two tables have the same name. Then you must
add a qualification to the column names to distinguish one name from the other.

How it's done: The EMPLOYEE table does not carry the department name, and the
DEPARTMENT table does not carry the employee ID. If you want to see the names
of the departments that the employees are associated with, you need to join the
EMPLOYEE and DEPARTMENT tables. These two tables have a common column,
DEPT_ID.

Because the column DEPT_ID has the same name in each table, you need to qualify
each common column name with the name of its table. Enter:

select emp_id, department.dept_id, dept_name
from department, employee

where department.dept_id = employee.dept_id;

This statement specifies that the rows to be retrieved and joined from the EMPLOYEE
and DEPARTMENT tables are those that have matching department IDs. If a
department ID is present in the DEPARTMENT table but not in the EMPLOYEE table
(as when a department has no employees), that row will not be returned.

The result looks like this:

Chapter 6. Accessing Multiple Tables 6-7

6.2 What is a join operation?

S T
EMP_ID DEPT_ID DEPT_NAME

 ------ ------- ---------

 2299 46-- MAINTENANCE

 3411 52-- CORPORATE MARKETING

4773 351- APPRAISAL - USED CARS

2-1- 221- SALES - NEW CARS

3338 112- PURCHASING - SERVICE

2246 11-- PURCHASING - USED CARS

 1-34 46-- MAINTENANCE

 2424 46-- MAINTENANCE

3767 22-- SALES - USED CARS

2898 112- PURCHASING - SERVICE

 3449 5--- CORPORATE ACCOUNTING

3-82 351- APPRAISAL - USED CARS

3341 353- APPRAISAL - SERVICE

 3199 46-- MAINTENANCE

466- 22-- SALES - USED CARS

22-9 353- APPRAISAL - SERVICE

 2894 52-- CORPORATE MARKETING

4--1 221- SALES - NEW CARS

5-9- 221- SALES - NEW CARS

1765 111- PURCHASING - NEW CARS

 4456 46-- MAINTENANCE

 2145 52-- CORPORATE MARKETING

3991 221- SALES - NEW CARS

 3778 51-- BILLING

 4358 52-- CORPORATE MARKETING

4962 221- SALES - NEW CARS

218- 22-- SALES - USED CARS

21-6 111- PURCHASING - NEW CARS

 3222 45-- HUMAN RESOURCES

 4--2 62-- CORPORATE ADMINISTRATION

 2437 46-- MAINTENANCE

 2-96 46-- MAINTENANCE

2--4 112- PURCHASING - SERVICE

 51-3 5--- CORPORATE ACCOUNTING

5--8 11-- PURCHASING - USED CARS

 4321 62-- CORPORATE ADMINISTRATION

 2598 51-- BILLING

3764 221- SALES - NEW CARS

 2461 62-- CORPORATE ADMINISTRATION

2448 22-- SALES - USED CARS

 1--3 62-- CORPORATE ADMINISTRATION

 1234 62-- CORPORATE ADMINISTRATION

 2466 5--- CORPORATE ACCOUNTING

4-27 221- SALES - NEW CARS

 2174 45-- HUMAN RESOURCES

 2781 52-- CORPORATE MARKETING

37-4 22-- SALES - USED CARS

4--8 221- SALES - NEW CARS

 3841 62-- CORPORATE ADMINISTRATION

 3433 46-- MAINTENANCE

 3288 46-- MAINTENANCE

47-3 11-- PURCHASING - USED CARS

3294 112- PURCHASING - SERVICE

 3118 45-- HUMAN RESOURCES

3769 352- APPRAISAL NEW CARS

 55 rows processed

W X

Does it matter which of the two department ID columns you choose to display?

No. The values in each of the two matching columns is the same.

6-8 CA-IDMS SQL Self-Training Guide

6.2 What is a join operation?

6.2.3 Qualifying a table name

In some cases, the tables are in different schemas. Then you must add a qualification
to the table name to specify which schema the table is associated with.

How it's done: The EMPLOYEE table doesn't contain project id and description
information, and the PROJECT table doesn't carry the project leader's first and last
name. If you want to see the projects and their respective project leaders, you must
join the EMPLOYEE and PROJECT tables using the PROJ_LEADER_ID and
EMP_ID columns. However, the EMPLOYEE table is assigned to the DEMOEMPL
schema and the PROJECT table is assigned to the DEMOPROJ schema. To access
data from both schemas, you must qualify the table names with the schema name.
Enter:

select emp_id, emp_lname, emp_fname, proj_desc from

 demoempl.employee, demoproj.project
 where emp_id=proj_leader_id;

S T
EMP_ID EMP_LNAME EMP_FNAME PROJ_DESC

 ------ --------- --------- ---------

 3411 Williams Catherine TV ads - WTVK

 3411 Williams Catherine New brand research

 2894 Griffin William Consumer study

 4358 Robinson Judith Service study

 2466 Bennett Patricia Systems analysis

5 rows processed

W X

 6.2.3.1 Exercise 6-2

Now you try it: You have to give the Human Resources department a list of
employees and the skills each has. However, it is easier to read this report if the
employees' names are listed as well.

Enter a SELECT statement to list employee ID, last name, first name, and skill ID
using the EMPLOYEE and EXPERTISE tables. Qualify the column name that is the
same in both tables. The EXPERTISE table is in DEMOPROJ and the EMPLOYEE
table is in DEMOEMPL.

The result looks like this:

Chapter 6. Accessing Multiple Tables 6-9

6.2 What is a join operation?

S T
EMP_ID EMP_LNAME EMP_FNAME SKILL_ID

------ --------- --------- --------

 1--3 Baldwin James 1---

 1-34 Gallway James 647-

 1234 Mills Thomas 1---

 1765 Alexander David 677-

 2--4 Johnson Eleanor 677-

 2-1- Parker Cora 7---

 2-96 Carlson Thomas 3-65

 2-96 Carlson Thomas 3333

 21-6 Widman Susan 677-

 2174 Zander Jonathan 443-

 218- Albertini Joan 7---

 22-9 Smith Michael 53-9

 2246 Hamel Marylou 1---

 2246 Hamel Marylou 667-

 .

 .

 .

69 rows processed

W X

If your results do not match what you see above, check “Exercise 6-2 answer” on
page B-19 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Using an alias: You use an alias as a shorthand method for qualifying a column
name.

You specify the alias in the FROM clause:

from expertise x, employee e

You then use the alias as a prefix on the column name.

How it's done: To use an alias instead of the table name to qualify the column
names from the previous example, enter:

select x.emp_id, emp_lname,
 emp_fname, skill_id

from expertise x, employee e

where x.emp_id = e.emp_id;

The result is the same as the previous statement.

6.2.4 Sorting the result

You can sort the table resulting from a join operation with ORDER BY.

 6.2.4.1 Exercise 6-3

Now you try it: Sort your last request in descending order by employee last name
and employee first name.

The result looks like this:

6-10 CA-IDMS SQL Self-Training Guide

6.2 What is a join operation?

S T
EMP_ID EMP_LNAME EMP_FNAME SKILL_ID

------ --------- --------- --------

 2174 Zander Jonathan 443-

 3118 Wooding Alan 518-

 5-9- Wills Stephen 7---

 3411 Williams Catherine 55--

 3991 Wilkins Fred 7---

 2424 Wilder Ronald 647-

 21-6 Widman Susan 677-

 4962 White Peter 513-

 3338 White Mark 677-

 3222 Voltmer Louise 1---

 3222 Voltmer Louise 443-

 2781 Thurston Joseph 542-

 2781 Thurston Joseph 543-

 4456 Thompson Thomas 3-65

 4456 Thompson Thomas 667-

 4--1 Thompson Jason 7---

 2437 Thompson Henry 3333

 2437 Thompson Henry 4444

 3449 Taylor Cynthia 52--

 22-9 Smith Michael 53-9

 3341 Smith Carl 53-9

 3288 Sampson Ralph 667-

 3288 Sampson Ralph 665-

 3288 Sampson Ralph 3333

 4--2 Roy Linda 441-

 4--2 Roy Linda 437-

 4358 Robinson Judith 55--

 2-1- Parker Cora 7---

 3764 Park Deborah 7---

 37-4 Moore Richard 7---

 1234 Mills Thomas 1---

 466- MacGregor Bruce 7---

 2448 Lynn David 7---

 3767 Lowe Frank 7---

 2--4 Johnson Eleanor 677-

 3294 Johnson Carolyn 677-

 2598 Jacobs Mary 6666

 2246 Hamel Marylou 1---

 2246 Hamel Marylou 667-

 47-3 Halloran Martin 513-

 47-3 Halloran Martin 425-

 2894 Griffin William 55--

 2894 Griffin William 1---

 1-34 Gallway James 647-

 5--8 Fordman Timothy 677-

 3778 Ferndale Jane 6666

 3778 Ferndale Jane 52--

 51-3 Ferguson Adele 52--

 3769 Donelson Julie 53-9

 4773 Dexter Janice 53-9

 3841 Cromwell Michelle 437-

 .

 .

 .

 69 rows processed

W X

If your results do not match what you see above, check “Exercise 6-3 answer” on
page B-19 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Chapter 6. Accessing Multiple Tables 6-11

6.2 What is a join operation?

6.2.5 Additional search criteria in a join

Remember that you specify the columns to be joined in the WHERE clause. You can
have additional search criteria in the WHERE clause as well by using AND and OR.

 6.2.6 Exercise 6-4

Now you try it: Human Resources wants a list of managers in charge of projects.
You need to create a list of those managers with their IDs, last and first names.

What tables will you join?

You'll join the EMPLOYEE and CONSULTANT tables.

What are the join columns?

EMP_ID in EMPLOYEE and MANAGER_ID in CONSULTANT are the join
columns.

Do you need to qualify any column name?

Yes, both tables have MANAGER_ID columns.

What additional search criteria do you need?

You need to specify that you only want each manager listed once.

The result looks like this:

S T
MANAGER_ID EMP_LNAME EMP_FNAME

 ---------- --------- ---------

 1--3 Baldwin James

 2466 Bennett Patricia

2 rows processed

W X

If your results do not match what you see above, check “Exercise 6-4 answer” on
page B-19 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

6.2.7 Things to remember about joining tables

When you join tables:

■ You are combining rows of data from two or more tables to form one result table

■ The join is based on common columns

■ If a column name in the SELECT statement has the same name in two or more
tables, it must be prefixed to specify the table

6-12 CA-IDMS SQL Self-Training Guide

6.2 What is a join operation?

■ The FROM clause contains the names of all the tables you are joining

■ You should use a WHERE clause to limit the result table

Chapter 6. Accessing Multiple Tables 6-13

6.3 Joining a table to itself

6.3 Joining a table to itself

You join a table to itself when two rows in a table contain information that you want
to combine together. This is called a reflexive join.

How it's done: The Human Resources department needs to identify Catherine
William's manager. The EMPLOYEE table contains the employee ID and the manager
ID. To find the name of Catherine William's manager, first you find Catherine
William's employee ID (3411) in the EMP_ID column. The row containing Catherine
William's employee ID also contains her manager's employee ID (2894) in the
MANAGER_ID column. Now you look in the EMPLOYEE table again to find the
manager's ID (2894) in the employee ID column. You'll find the manager's name in
this row:

 EMPLOYEE

 ┌────────┬───────────┬────────────┐

│EMP_ID │EMP_LNAME │MANAGER_ID │

 ├────────┼───────────┼────────────┤

│2-96 │CARLSON │4321 │

 │ │ │ │

 │3411 │WILLIAMS │2894 │

 │ │ │ │

│2894 │GRIFFIN │1--3 │

 └────────┴─────┬─────┴────────────┘

 │

 │

 │

 ↓

┌────────┬───────────┬────────────┬────────┬───────────┬────────────┐

│EMP_ID │EMP_LNAME │MANAGER_ID │EMP_ID │EMP_LNAME │MANAGER_ID │

├────────┼───────────┼────────────┼────────┼───────────┼────────────┤

│3411 │WILLIAMS │2894 │2894 │GRIFFIN │1--3 │

└────────┴───────────┴────────────┴────────┴───────────┴────────────┘

To access this information, enter:

select mgr.emp_lname as "Manager",

sub.emp_lname as "Subordinate"

from employee mgr, employee sub

where mgr.emp_id = sub.manager_id

and sub.emp_id = 3411;

The result looks like this:

S T
Manager Subordinate

------- -----------

Griffin Williams

1 row processed

W X

Things to remember about a reflexive join

■ You assign aliases so that the manager's employee ID can be distinguished from
the subordinate's employee ID

6-14 CA-IDMS SQL Self-Training Guide

6.3 Joining a table to itself

■ You name the table twice in the FROM clause and give each reference an alias

■ You compare the two columns that share the same type of information in the
WHERE clause (MGR.EMP_ID = SUB.MANAGER_ID)

Chapter 6. Accessing Multiple Tables 6-15

6.4 Using UNION

 6.4 Using UNION

You can use UNION to append the rows returned by one set of selection criteria to the
rows returned by another set.

Appending is different from joining. To join tables, you merge selected columns of one
table with selected columns of another table. To append tables, you combine selected
rows of one table to selected rows of another table.

How it's done: To combine the CONSULTANT and EMPLOYEE tables to get a
complete list of all people on the payroll, enter:

select con_id, con_lname, con_fname

 from consultant

 union
select emp_id, emp_lname, emp_fname

 from employee;

This statement adds rows from the EMPLOYEE table to the rows in the
CONSULTANT table.

The result looks like this:

S T
EMP_ID EMP_LNAME EMP_FNAME

 ------ --------- ---------

 .

 .

 .

 4321 Bradley George

 4358 Robinson Judith

 4456 Thompson Thomas

 466- MacGregor Bruce

 47-3 Halloran Martin

 4773 Dexter Janice

 4962 White Peter

 5--8 Fordman Timothy

 5-9- Wills Stephen

 51-3 Ferguson Adele

 9--- Legato James

 9388 Candido Linda

 9439 Miller Charles

 9443 Jones Diane

59 rows processed

W X

Things to remember about UNION

■ UNION combines rows from separate SELECT statements and removes duplicate
rows

■ The columns you pair must match in length and data type and in allowing or not
allowing null values

■ You must name the same number of columns in each of the SELECT statements

■ Column names do not have to match

6-16 CA-IDMS SQL Self-Training Guide

6.4 Using UNION

■ If you want to sort the result table, use a single ORDER BY clause after the last
SELECT statement

■ You must use column numbers if you want to sort the result table

■ The column names from the second table are used as column headings

■ You can specify column headings using AS on the second table

Adding rows selectively: By adding WHERE clauses, you can use UNION to
selectively add rows from one or more tables to another table.

How it's done: To see information on both employees and consultants working in a
particular department, enter:

select con_id, con_lname, con_fname

 from consultant

where dept_id = 52��
 union

select emp_id, emp_lname, emp_fname

 from employee

where dept_id = 52��;

This statement adds selected rows from the EMPLOYEE table to selected rows in the
CONSULTANT table.

The result looks like this:

S T
EMP_ID EMP_LNAME EMP_FNAME

 ------ --------- ---------

 2145 Catlin Martin

 2781 Thurston Joseph

 2894 Griffin William

 3411 Williams Catherine

 4358 Robinson Judith

 9388 Candido Linda

 9443 Jones Diane

7 rows processed

W X

Chapter 6. Accessing Multiple Tables 6-17

6.5 Review

 6.5 Review

Match each statement on the left with a term on the right. There will be one term left
over.

To check your answers, see “Review answers” on page B-19.

Description Term

1. Needed to join two or more tables

2. Resolves the problem of joining table columns that
have the same name

3. Where the joining is specified

4. Where an alias is identified

5. Used to append one table to another

a. The WHERE clause

b. Common columns

c. The UNION clause

d. The FROM clause

e. The SELECT clause

f. Aliases

6-18 CA-IDMS SQL Self-Training Guide

6.6 Scenarios

 6.6 Scenarios

Create the appropriate statements online to retrieve the needed data:

1. Management would like to see which employees are involved in which projects.
Write a SELECT statement to retrieve this information by joining the
EMPLOYEE and PROJECT tables that contain the data. Display the information
by project description.

2. The Human Resources department needs a list of employees and their remaining
vacation time. This information is contained in the EMPLOYEE and BENEFITS
tables. Display employee ID and last name as well as the vacation time remaining
for fiscal year 2000. Order your report by employee ID.

3. More statistics are being gathered on vacation hours. You have been asked to
produce a report of average vacation hours taken for each department. Display
department ID and average vacation taken for fiscal year 1999. Order the report
by department ID.

4. The budget committee needs a list of job titles, names of employees holding those
jobs, and current salaries of those employees. They are interested only in jobs
offering salaries of more than $55,000. Order your list by job title and include the
job ID.

Hint: You need to join three tables to get this information. Specify the three
tables in the FROM clause. Join two tables at a time in the WHERE clause. Use
aliases to qualify column names.

5. Employee 2004 has just had a review and is due to get a pay increase. The
increase is stored as REVIEW_PERCENT in the BENEFITS table. Employee
2004's manager has asked you to show her how much the increase is in dollar
amount. To get this information, you need to multiply the current salary for fiscal
year 2000 by the review percent. Show the employee ID, current salary, percent
increase, and increase as a dollar amount.

Hint: You need to perform a calculation involving columns from two different
tables.

To check your answers, see “Scenario answers” on page B-20.

Chapter 6. Accessing Multiple Tables 6-19

6-20 CA-IDMS SQL Self-Training Guide

Chapter 7. Nesting SELECT Statements

7.1 About this chapter . 7-3
7.2 SELECT statement in a WHERE clause . 7-4
7.3 Using a subquery with IN . 7-5

7.3.1 Exercise 7-1 . 7-5
7.4 Using an aggregate function in a nested SELECT statement 7-7

7.4.1 Exercise 7-2 . 7-7
7.4.1.1 Exercise 7-2B . 7-8

7.5 Using EXISTS . 7-10
7.5.1 Exercise 7-3 . 7-11

7.6 Things to remember about subqueries . 7-14
7.7 Review . 7-15
7.8 Scenarios . 7-16

Chapter 7. Nesting SELECT Statements 7-1

7-2 CA-IDMS SQL Self-Training Guide

7.1 About this chapter

7.1 About this chapter

Goal: When you have completed this chapter, you will be able to nest a SELECT
statement within another SELECT statement to retrieve specified data.

Summary: An SQL request that is nested inside another SELECT statement is
called a subquery. The subquery returns a set of values for use in the outer SELECT
statement:

select
from
where column = f───────────┐

 │

 (select ────┘

 from
where column = f───────────┐

 │

 (select ────┘

 from
where column =));

You nest SELECT statements when you want to use data from one table as part of the
criteria of another table. A subquery is often used in conjunction with predicates IN
and EXISTS.

Chapter 7. Nesting SELECT Statements 7-3

7.2 SELECT statement in a WHERE clause

7.2 SELECT statement in a WHERE clause

You use a SELECT statement in a WHERE clause to create a result table that limits
the rows that can be retrieved by the outer SELECT statement.

Generally, the SELECT statement nested within a WHERE clause can return only one
column.

7-4 CA-IDMS SQL Self-Training Guide

7.3 Using a subquery with IN

7.3 Using a subquery with IN

Often, you want to retrieve rows from a table provided that values in a particular
column are in another table. You can use IN as you did in Chapter 4. The nested
SELECT statement provides the list that follows IN.

How it's done: You might want the last names and telephones of employees who
are department heads. To retrieve the information from the EMPLOYEE table, first
determine the employees that are the heads of departments. You can do this through a
subquery. You must enclose the subquery in parentheses. Enter:

select emp_lname, phone, dept_id

 from employee

where emp_id in

 (select dept_head_id
 from department);

The subquery first retrieves all the employee IDs of department heads from the
DEPARTMENT table. The outer SELECT statement then uses this list to retrieve the
last name, phone, and department ID of these employees from the EMPLOYEE table.

The result looks like this:

S T
EMP_LNAME PHONE DEPT_ID

--------- ----- -------

Albertini 5-83145366 22--

Alexander 5-87394772 111-

Anderson 5-83873664 62--

Baldwin 6173295757 62--

Bennett 5-894877-9 5---

Brooks 5-89273644 351-

Carlson 6175553643 46--

Donelson 5-8485-432 352-

Griffin 5-88449--8 52--

Hamel 5-83457789 11--

Jacobs <null> 51--

Johnson 5-89253998 112-

Parker <null> 221-

Smith 6175563331 353-

Voltmer 617663552- 45--

15 rows processed

W X

 7.3.1 Exercise 7-1

Now you try it: The Human Resources department needs to find out which
departments have employees with more than 80 hours of vacation remaining for fiscal
year 1999 so that the department head can be notified.

Enter a SELECT statement using a subquery to identify the IDs of those departments.

What tables are involved?

Chapter 7. Nesting SELECT Statements 7-5

7.3 Using a subquery with IN

You need to access the BENEFITS table first to find out about remaining vacation
hours. Then access the EMPLOYEE table to find the department ID.

You can use DISTINCT to eliminate duplicates.

The result looks like this:

S T
 DEPT_ID

 46--

 62--

 2 rows processed

W X

If your results do not match what you see above, check “Exercise 7-1 answer” on
page B-24 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

7-6 CA-IDMS SQL Self-Training Guide

7.4 Using an aggregate function in a nested SELECT statement

7.4 Using an aggregate function in a nested SELECT
statement

You can use an aggregate function in a nested SELECT statement when you want to
compare a value in a table with another value derived through an aggregate function.

How it's done: You want to see job IDs with current salaries that are higher than
the average salary for all jobs. To do this, you use the POSITION table and enter:

select job_id, salary_amount

 from position

where salary_amount >

 (select avg(salary_amount)
 from position);

This statement first finds the average salary for all jobs in the POSITION table and
then looks at all jobs to see which exceed that average.

The result looks like this:

S T
JOB_ID SALARY_AMOUNT

------ -------------

 4734 53665.--

 5555 7644-.--

 47-- 59488.--

 4-23 74776.--

 589- 68-16.--

 589- 66144.--

 6-21 111593.--

 4734 57824.5-

 5555 76961.--

 6--4 11-448.--

 4666 8528-.--

 47-- 5928-.--

 511- 56977.8-

 5555 54184.--

 5555 7-72-.--

 8--1 117832.68

 9--1 146432.--

 6-11 94953.52

 47-- 53665.56

19 rows processed

W X

Enter the subquery SELECT statement alone to check these results by looking at the
average salary itself.

 7.4.1 Exercise 7-2

Now you try it: As part of the Human Resources department's research on insurance
claims, they need a list of employees who have more than the average number of
dependents. To get this information, you need access to the COVERAGE table. Your
report should display employee ID and number of dependents.

Chapter 7. Nesting SELECT Statements 7-7

7.4 Using an aggregate function in a nested SELECT statement

The result looks like this:

S T
 EMP_ID NUM_DEPENDENTS

 ------ --------------

 3411 3

 3411 3

 3338 2

 2246 2

 2246 2

 3767 2

 3767 2

 3199 2

 3199 2

 2894 3

 2894 3

 5-9- 3

 1765 2

 1765 2

 3991 5

 3991 5

 3991 5

 4962 4

 3222 2

 2437 2

 2-96 3

 2-96 3

 5--8 2

 5--8 2

 2448 3

 1234 5

 1--3 3

 1--3 3

 2781 2

 37-4 3

 3- rows processed

W X

If your results do not match what you see above, check “Exercise 7-2 answer” on
page B-24 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

 7.4.1.1 Exercise 7-2B

Human Resources has requested you remove duplicate employees from the report.

7-8 CA-IDMS SQL Self-Training Guide

7.4 Using an aggregate function in a nested SELECT statement

S T
 EMP_ID NUM_DEPENDENTS

 ------ --------------

 1--3 3

 1234 5

 1765 2

 2-96 3

 2246 2

 2437 2

 2448 3

 2781 2

 2894 3

 3199 2

 3222 2

 3338 2

 3411 3

 37-4 3

 3767 2

 3991 5

 4962 4

 5--8 2

 5-9- 3

 19 rows processed

W X

If your results do not match what you see above, check “Exercise 7-2b answer” on
page B-24 for the correct SQL syntax. Remember result tables may be shortened in
this guide.

Chapter 7. Nesting SELECT Statements 7-9

7.5 Using EXISTS

 7.5 Using EXISTS

When you want to retrieve rows from a table based on the existence of rows in
another table, use the EXISTS predicate. The EXISTS predicate includes a subquery.
If rows in a table meet the selection criteria in the subquery, the outer SELECT
statement proceeds. With the EXISTS predicate, you usually use * rather than a
column name with SELECT in the subquery for simplicity.

How it's done: You want to retrieve the names of employees who have a certain
level of a certain skill. You need to access both the EXPERTISE and EMPLOYEE
tables to do this. Enter:

select emp_lname, emp_fname

 from employee

 where exists
 (select R

 from expertise

where skill_id = 4444

and skill_level = '-4'

and employee.emp_id = expertise.emp_id);

The outer SELECT statement looks at the first row in the EMPLOYEE table and
passes the employee ID to the subquery. The subquery then evaluates this row by
checking the employee ID against the criteria in the WHERE clause.

The outer SELECT statement and the subquery are connected by comparing common
columns in the WHERE clause of the subquery.

The result looks like this:

S T
EMP_LNAME EMP_FNAME

--------- ---------

Thompson Henry

1 row processed

W X

Here's another: If you want to list all the jobs in which an employee earns more
than $65,000, enter:

select job_id, job_title

 from job

 where exists

 (select R

 from position

where salary_amount > 65---

and "position".job_id = job.job_id);

7-10 CA-IDMS SQL Self-Training Guide

7.5 Using EXISTS

Notes:

POSITION is the table name and an SQL keyword; therefore, when the
POSITION table name is used as an identifier, it must be enclosed in double
quotation marks.

As an alternative, you can use an alias for the table name. For example:

select job_id, job_title

 from job

 where exists

 (select R

from position p

where salary_amount > 65---

and p.job_id = job.job_id);

The outer SELECT statement looks at the first row of the JOB table and passes the job
ID to the subquery. If the row meets the selection criteria set up by the WHERE
clause in the subquery, the row is displayed.

You need to qualify the column names in this example because the name, JOB_ID, is
the same in both tables.

The result looks like this:

S T
 JOB_ID JOB_TITLE

 ------ ---------

 8--1 Vice President

 9--1 President

6-11 Manager - Acctng

 4666 Sr Mechanic

 5555 Salesperson

 4-23 Accountant

6--4 Manager - HR

 589- Appraisal Spec

6-21 Manager - Mktng

 9 rows processed

W X

 7.5.1 Exercise 7-3

Now you try it: The budget group needs to know the department IDs of all
departments where an employee earns more than $50,000. Enter a SELECT statement
that will show this information using the POSITION and EMPLOYEE tables.

Hint: Use DISTINCT to eliminate duplicates.

The result looks like this:

Chapter 7. Nesting SELECT Statements 7-11

7.5 Using EXISTS

S T
 DEPT_ID

 11--

 112-

 22--

 221-

 351-

 353-

 45--

 46--

 5---

 52--

 62--

 11 rows processed

W X

If your results do not match what you see above, check “Exercise 7-3 answer” on
page B-24 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Using NOT EXISTS: You may also want to retrieve information from a table
provided that no rows in another table meet the selection criteria.

For example, you might want to look for possible job openings by finding jobs that
have no associated employee. To retrieve this information from the JOB table, first
determine which jobs do not exist in the POSITION table. Enter:

select job_id, job_title

 from job

where not exists
(select R from position

where "position".job_id = job.job_id);

Notes:

POSITION is the table name and an SQL keyword; therefore, when the
POSITION table name is used as an identifier, it must be enclosed in double
quotation marks.

As an alternative, you can use an alias for the table name. For example:

select job_id, job_title

 from job

where not exists
(select R from position p

where p.job_id = job.job_id);

The result looks like this:

7-12 CA-IDMS SQL Self-Training Guide

7.5 Using EXISTS

S T

JOB_ID JOB_TITLE

 ------ ---------

 3-51 Data Entry Clerk

 3-29 Computer Operator

 5111 CUST SER REP

 2-55 PAYROLL CLERK

4 rows processed

W X

Chapter 7. Nesting SELECT Statements 7-13

7.6 Things to remember about subqueries

7.6 Things to remember about subqueries

■ You usually use SELECT * in a subquery in an EXISTS predicate

■ You must enclose the nested SELECT statement in parentheses

■ You join the outer SELECT statement and the subquery when using the EXISTS
predicate by comparing columns in the WHERE clause of the subquery

■ You can use aliases to qualify column names

7-14 CA-IDMS SQL Self-Training Guide

7.7 Review

 7.7 Review

Fill in the blanks with the appropriate words or phrases:

1. A nested SELECT statement is also known as a ______.

2. A subquery is located in a ______ clause.

3. A subquery must be enclosed in ___________________.

4. You use the ______ predicate to retrieve rows based on the existence of rows in
another table.

5. When using an EXISTS predicate, the outer SELECT statement and the subquery
are linked by matching ______ in the WHERE clause in the subquery.

6. You can use an asterisk (*) in the subquery if you are using the ______ keyword.

To check your answers, see “Review answers” on page B-24.

Chapter 7. Nesting SELECT Statements 7-15

7.8 Scenarios

 7.8 Scenarios

Create the appropriate statements online to retrieve the needed data:

1. For tax purposes, the Accounting department needs to keep track of all jobs for
which employees earn more than $65,000. A list of job titles is sufficient. (Use the
JOB and POSITION tables.)

2. Upper management is concerned about the equality of salaries within
Commonwealth Auto. They need to have a list by name of all jobs for which at
least one employee earns less than $35,000. (Use the JOB and POSITION tables.)

3. Over the years, lots of department information has been added to the database.
The Human Resources department is responsible for this portion of the database
and knows that there are some departments still listed for which there are no
longer any associated employees. They have asked you for a list showing these
departments. Order the list by department ID. (Use the DEPARTMENT and
EMPLOYEE tables.)

To check your answers, see “Scenario answers” on page B-25.

7-16 CA-IDMS SQL Self-Training Guide

Chapter 8. Updating a Table

8.1 About this chapter . 8-3
8.2 Inserting data into a table . 8-4

8.2.1 Exercise 8-1 . 8-4
8.2.2 Exercise 8-2 . 8-6
8.2.3 Exercise 8-3 . 8-6

8.3 Modifying data in a table with SET . 8-8
8.3.1 Exercise 8-4 . 8-8
8.3.2 Exercise 8-5 . 8-10
8.3.3 Exercise 8-6 . 8-10
8.3.4 Exercise 8-7 . 8-11

8.4 Removing data from a table . 8-12
8.4.1 Exercise 8-8 . 8-12
8.4.2 Exercise 8-9 . 8-13

8.5 Review . 8-14

Chapter 8. Updating a Table 8-1

8-2 CA-IDMS SQL Self-Training Guide

8.1 About this chapter

8.1 About this chapter

Goal: When you have completed this chapter, you will be able to store rows of data
in a table and change and delete existing data in a table.

Summary: Up to this time, you have been retrieving data that exists in a table in the
database. Now you are going to add, modify, and delete rows of data in a table. The
statements you will use are:

■ INSERT, to add a row of data to a table

■ UPDATE, to change the values in one or more columns in all rows of a table or
in rows that satisfy a search condition

■ DELETE, to remove one or more rows from a table

Chapter 8. Updating a Table 8-3

8.2 Inserting data into a table

8.2 Inserting data into a table

To add complete new rows of data to an existing table, use the INSERT statement and
specify the values you want to add.

How it's done without column names: Suppose the company sets up a new
department, the Audit department, and you need to add this information to the
DEPARTMENT table. To do this, enter:

insert into department
values (4-4-, 1234,'D-9', 'Audit');

The statement above adds the row into the table with the other department information.

Things to remember when using INSERT

■ You can add only one row of values with one INSERT statement.

■ Use INSERT INTO to identify the table to which you are going to add a new row

■ Use the VALUES clause to identify the column values

■ Enclose the column values in parentheses, separating them with commas

■ Enclose values for character string data in single quotation marks

■ The order of the column values must match the order of the columns defined for
the table.

■ Refer to the SQL reference manual for your environment to determine how to
enter dates, money, and other types of data

Using the keyword NULL: If you do not have data available for a particular
column, you can insert the keyword NULL as a place holder if the column has been
defined to allow null values.

 8.2.1 Exercise 8-1

Now you try it: Add another department to Commonwealth Auto. The only values
you have right now are the department ID, 6060, the department name, Claims, and
the division code, D09. The department name and division code columns contain
character data. You do not know the ID of the head of the department.

Enter a SELECT statement to display all departments in order by department id and
confirm your addition.

The result looks like this:

8-4 CA-IDMS SQL Self-Training Guide

8.2 Inserting data into a table

S T
DEPT_ID DEPT_HEAD_ID DIV_CODE DEPT_NAME

 ------- ------------ -------- ---------

11-- 2246 D-2 PURCHASING - USED CARS

111- 1765 D-4 PURCHASING - NEW CARS

112- 2--4 D-6 PURCHASING - SERVICE

22-- 218- D-2 SALES - USED CARS

221- 2-1- D-4 SALES - NEW CARS

351- 3-82 D-2 APPRAISAL - USED CARS

352- 3769 D-4 APPRAISAL NEW CARS

353- 22-9 D-6 APPRAISAL - SERVICE

 4-4- 1234 D-9 Audit

42-- 1--3 D-4 LEASING - NEW CARS

 45-- 3222 D-9 HUMAN RESOURCES

 46-- 2-96 D-6 MAINTENANCE

 49-- 2466 D-9 MIS

 5--- 2466 D-9 CORPORATE ACCOUNTING

 51-- 2598 D-6 BILLING

 52-- 2894 D-9 CORPORATE MARKETING

 6--- 1--3 D-9 LEGAL

 6-6- <null> D-9 Claims

 62-- 2461 D-9 CORPORATE ADMINISTRATION

 19 rows processed

W X

If your results do not match what you see above, check “Exercise 8-1 answer” on
page B-27 for the correct SQL syntax. Remember that result tables may be shortened
in this guide.

Using INSERT with column names: If you want to insert only one or a few
columns in a row, specify the column names.

How it's done: Suppose you want to add yet another department to the company,
but you have only a department ID, department name, and division code. Enter:

insert into department (dept_id, dept_name, div_code)
values (5-5-, 'Research', 'D-9');

The column names are in parentheses and separated by commas.

The values must be given in the correct column order. You can use the word NULL
when you don't have a value in a column as long as the column accepts null values.

If you do not specify a column and a value for that column, a null value will be
inserted for you. If the column does not accept null values, the insert is rejected.

Enter a SELECT statement to display the DEPARTMENT table in Department id
order to confirm the insertion.

The result looks like this:

Chapter 8. Updating a Table 8-5

8.2 Inserting data into a table

S T
DEPT_ID DEPT_HEAD_ID DIV_CODE DEPT_NAME

 ------- ------------ -------- ---------

11-- 2246 D-2 PURCHASING - USED CARS

111- 1765 D-4 PURCHASING - NEW CARS

112- 2--4 D-6 PURCHASING - SERVICE

22-- 218- D-2 SALES - USED CARS

221- 2-1- D-4 SALES - NEW CARS

351- 3-82 D-2 APPRAISAL - USED CARS

352- 3769 D-4 APPRAISAL NEW CARS

353- 22-9 D-6 APPRAISAL - SERVICE

 4-4- 1234 D-9 Audit

42-- 1--3 D-4 LEASING - NEW CARS

 45-- 3222 D-9 HUMAN RESOURCES

 46-- 2-96 D-6 MAINTENANCE

 49-- 2466 D-9 MIS

 5--- 2466 D-9 CORPORATE ACCOUNTING

 5-5- <null> D-9 RESEARCH

 51-- 2598 D-6 BILLING

 52-- 2894 D-9 CORPORATE MARKETING

 6--- 1--3 D-9 LEGAL

 6-6- <null> D-9 Claims

 62-- 2461 D-9 CORPORATE ADMINISTRATION

2- rows processed

W X

 8.2.2 Exercise 8-2

Try a few more: Add two more departments that you choose. Leave the
department head column null.

Enter a SELECT statement to display the table to confirm the insertions. To check
your answers, see “Exercise 8-2 answer” on page B-27.

 8.2.3 Exercise 8-3

Try another: A project is about to get underway. You know that the project ID is
P434 and that its name is Mass Media Campaign Blitz.

Insert a row into the PROJECT table giving this information. The PROJ_ID and
PROJ_DESC columns contain character data.

Confirm the insertion. To check your answers, see “Exercise 8-3 answer” on
page B-27. The result looks like this:

S T
 PROJ_ID PROJ_DESC

 ------- ---------

 C2-- New brand research

 C2-3 Consumer study

 C24- Service study

 P4-- Christmas media

 P434 Mass Media Campaign Blitz

 P634 TV ads - WTVK

 D88- Systems analysis

 7 rows processed

W X

8-6 CA-IDMS SQL Self-Training Guide

8.2 Inserting data into a table

Inserting rows with SELECT: You can copy selected rows from one table and put
them into another table using the SELECT statement within the INSERT statement. A
SELECT statement in an INSERT statement is referred to as a query specification.

Include a WHERE clause in the SELECT statement to insert only those rows meeting
the search condition.

How it's done: Your company has decided to hire one of the consultants, 9388, as
a full-time employee. To add the employee information from the CONSULTANT table
into the ASSIGNMENT table, enter:

insert into assignment (emp_id, proj_id, start_date)

select con_id, proj_id, start_date

 from consultant

where con_id = 9388;

The columns in the receiving table must have data compatible with the data of the
corresponding columns in the sending table.

You can use SELECT * if you are using all columns in the same order as in the table
to which you are adding the row.

Enter a SELECT statement to display the table and confirm the insertion.

The result looks like this:

S T
EMP_ID PROJ_ID START_DATE END_DATE

 ------ ------- ---------- --------

 2894 P634 2-----2-15 <null>

 3411 P634 2-----3--1 <null>

 4358 C24- 1998--6--1 1998--8-15

 2466 D88- 1999-11--1 <null>

 9388 D88- 1997-12-21 <null>

5 rows processed

W X

Chapter 8. Updating a Table 8-7

8.3 Modifying data in a table with SET

8.3 Modifying data in a table with SET

You use the UPDATE statement to modify columns or rows in a table.

Modifying values in a column: If you want to modify every value in a column
throughout the table, you need to:

■ Identify the table you intend to modify by specifying UPDATE and the table
name

■ Name the column in which the modification is to take place and give the new data
with a SET clause

How it's done: At certain times during the year, every employee's accrued vacation
is increased by eight hours.

 8.3.1 Exercise 8-4

Enter a SELECT statement to display the employees and vacation hours accrued. To
check your SELECT statement, see “Exercise 8-4 answer” on page B-27. Jot down a
couple of the employees and their vacation hours accrued so you can check them after
you have made the changes.

To make the vacation hour changes, enter:

update benefits
set vac_accrued = vac_accrued + 8
where fiscal_year = 2---;

What message do you see?

You see a message specifying the number of rows that have been updated.

Display the changes: Enter a SELECT statement sorted by employee id to display
the updated table.

The result looks like this:

8-8 CA-IDMS SQL Self-Training Guide

8.3 Modifying data in a table with SET

S T
 EMP_ID VAC_ACCRUED

 ------ -----------

 1--3 1--.--

 1-34 1--.5-

 1234 1--.--

 1765 1--.5-

 2--4 1--.5-

 2-1- 1--.75

 2-96 1--.5-

 21-6 1--.5-

 2174 1--.--

 218- 1--.5-

 22-9 1--.5-

 2246 1--.5-

 2424 1--.5-

 2437 76.--

 2448 76.--

 2461 76.--

 2466 1--.5-

 2598 68.--

 2781 76.--

 2894 76.--

 3-82 76.--

 3118 76.--

 3222 76.--

 3288 76.--

 3294 76.--

 3338 76.--

 3341 76.--

 3411 76.--

 3433 76.--

 3449 76.--

 37-4 76.--

 3764 76.--

 3767 76.--

 3769 76.--

 3778 76.--

 3841 76.--

 3991 76.--

 4--1 76.--

 4--2 76.--

 4--8 76.--

 4-27 76.--

 4321 76.--

 4358 76.--

 4456 76.--

 466- 76.--

 47-3 54.75

 4773 76.--

 4962 76.--

 5--8 54.5-

 5-9- 54.--

 51-3 54.--

 51 rows processed

W X

Modifying selected rows: Often you want to change the value in a column only
in rows that meet a certain search condition.

How it's done: All employees who have accrued more than 80 hours of vacation
time are supposed to have an additional eight hours added to their accrued vacation.
To do this, add a WHERE clause to the previous statement:

Chapter 8. Updating a Table 8-9

8.3 Modifying data in a table with SET

update benefits

set vac_accrued = vac_accrued + 8

where vac_accrued > 8�
and fiscal_year = 2---;

Display the changes: Enter a SELECT statement to display the BENEFITS table
to confirm the change.

The result looks like this:

S T
 EMP_ID VAC_ACCRUED

 ------ -----------

 2-1- 1-8.75

 2246 1-8.5-

 1-34 1-8.5-

 2424 1-8.5-

 22-9 1-8.5-

 1765 1-8.5-

 218- 1-8.5-

 21-6 1-8.5-

 2-96 1-8.5-

 2--4 1-8.5-

 1--3 1-8.--

 1234 1-8.--

 2466 1-8.5-

 2174 1-8.--

 14 rows processed

W X

The only rows for which that column is updated are the rows that meet the condition.

 8.3.2 Exercise 8-5

Now you try it: It was recently discovered that the name of department 6060 is
incorrect. Instead of Claims, it should be Lost Claims. Make the appropriate change
to the DEPARTMENT table.

Confirm the modification by writing an appropriate SELECT statement. To check
your answers, see “Exercise 8-5 answer” on page B-27.

 8.3.3 Exercise 8-6

Try another: Update the EMPLOYEE table so that employee 3433 is associated
with department 6200.

Confirm the modification by issuing an appropriate SELECT statement. To check
your answers, see “Exercise 8-6 answer” on page B-27.

8-10 CA-IDMS SQL Self-Training Guide

8.3 Modifying data in a table with SET

 8.3.4 Exercise 8-7

And another: Three employees (1034, 3704, and 4660) have recently moved to
Framingham. Update the EMPLOYEE table appropriately.

Confirm the modification by issuing an appropriate SELECT statement. To check
your answers, see “Exercise 8-7 answer” on page B-27.

Chapter 8. Updating a Table 8-11

8.4 Removing data from a table

8.4 Removing data from a table

Use the DELETE statement to remove one or more rows from a database table.

How it's done: One of the departments you entered previously, department 4040,
shouldn't exist at all. Delete it by entering:

delete from department
where dept_id = 4-4-;

This will delete only information on department 4040.

What message do you see?

You see a message stating that one row was deleted.

Display the changes: Enter a SELECT statement to display the DEPARTMENT
table to confirm the deletion.

The result looks like this:

S T
DEPT_ID DEPT_HEAD_ID DIV_CODE DEPT_NAME

 ------- ------------ -------- ---------

11-- 2246 D-2 PURCHASING - USED CARS

111- 1765 D-4 PURCHASING - NEW CARS

112- 2--4 D-6 PURCHASING - SERVICE

22-- 218- D-2 SALES - USED CARS

221- 2-1- D-4 SALES - NEW CARS

351- 3-82 D-2 APPRAISAL - USED CARS

352- 3769 D-4 APPRAISAL NEW CARS

353- 22-9 D-6 APPRAISAL - SERVICE

42-- 1--3 D-4 LEASING - NEW CARS

 45-- 3222 D-9 HUMAN RESOURCES

 46-- 2-96 D-6 MAINTENANCE

 49-- 2466 D-9 MIS

 5--- 2466 D-9 CORPORATE ACCOUNTING

 51-- 2598 D-6 BILLING

 52-- 2894 D-9 CORPORATE MARKETING

 6--- 1--3 D-9 LEGAL

 6-6- <null> D-9 Claims

 62-- 2461 D-9 CORPORATE ADMINISTRATION

 19 rows processed

W X

 8.4.1 Exercise 8-8

Now you try it: Department 5050 also should not be in the database. Delete it from
the DEPARTMENT table.

Enter a SELECT statement to confirm the deletion. To check your answers, see
“Exercise 8-8 answer” on page B-28.

8-12 CA-IDMS SQL Self-Training Guide

8.4 Removing data from a table

Omitting the WHERE clause: If you do not use the WHERE clause in the
DELETE statement, all rows of data are deleted from the table. The empty table
remains in the database.

 8.4.2 Exercise 8-9

Try another: Create a DELETE statement to erase department 6060 and the other
two departments you added from the DEPARTMENT table while practicing INSERT.

Confirm the deletion by issuing an appropriate SELECT statement. To check your
answers, see “Exercise 8-9 answer” on page B-28.

Chapter 8. Updating a Table 8-13

8.5 Review

 8.5 Review

Choose the correct answers for the questions below. More than one answer can apply
for each question.

1. You use a SELECT statement with INSERT to:

a. Copy specific rows from one table to another

b. Add a completely new row to a database

c. Modify a row in a table

2. If you don't have a value for every column you are adding to a table, you can:

a. Identify only the columns you are going to insert values into

b. Use the keyword NULL for the columns where the value is unknown

c. Use two quotes with a space between for the columns where the value is
unknown

3. You can update all rows in a table by:

a. Using a WHERE clause with an *

b. Omitting the WHERE clause

c. Using an * after the keyword UPDATE

4. You can update selected rows in a table by:

a. Specifying columns after the keyword UPDATE

b. Using a WHERE clause with an *

c. Specifying a search condition in a WHERE clause

5. You are updating all columns in a table but do not know the specific value to put
into one column. You can:

a. Use the keyword UNKNOWN for the column where the value is unknown

b. Use two quotes with a space between for the column where the value is
unknown

c. Use the keyword NULL for the column where the value is unknown

6. If you do not have a WHERE clause in a DELETE statement:

a. All the rows are deleted and the table is deleted as well

b. The table is deleted

c. All the rows are deleted but the table remains

To check your answers, see “Review answers” on page B-28.

8-14 CA-IDMS SQL Self-Training Guide

Part III. Appendixes

CA-IDMS SQL Self-Training Guide

Appendix A. Sample Data Description Language

A.1 About this appendix . A-3
A.2 Table creation . A-4
A.3 Indexes . A-6
A.4 Views . A-7
A.5 Data integrity . A-8

Appendix A. Sample Data Description Language A-1

A-2 CA-IDMS SQL Self-Training Guide

A.1 About this appendix

A.1 About this appendix

Up to now, you have been using SQL DML statements to retrieve or update data. You
haven't been concerned with table design or layout, and you have had full access to all
tables. This appendix shows how a system administrator might use DDL to define a
database and users' access to it. If you use SQL against a multi-user database, your
use can be affected by decisions made by the system administrator who:

■ Creates databases and tables using SQL DDL

■ Specifies which database the tables are associated with and identifies the physical
files in which to store data

■ Defines constraints on the data so that only valid data is stored in the database

■ Restricts access to tables and creates views of them

Each of these functions can have an impact on the way you access data from tables.

No online exercises: There are no online exercises in this chapter. Please do not
enter any of the statements online.

Appendix A. Sample Data Description Language A-3

A.2 Table creation

 A.2 Table creation

Before you can access a table, it must be defined to the database management system.

For example, to set up the EMPLOYEE table, you or the system administrator uses an
appropriate tool to create the following DDL statement:

The system administrator specifies the column names and the kind of data you can put
into each column.

Common columns: The system administrator identifies potential relationships
between tables and plans for common columns that can become foreign keys. You use
these common columns when you want to join tables.

Temporary tables: In a multi-user database environment, there are times when you
need to store data for only a short period of time, perhaps as long as a program is
running. When tables are set up for this purpose, they are called temporary tables.

The data in temporary tables is not stored in the database and is not accessible to other
users.

For example, you may need to access all the company's accounts receivable data for
the past five years. This information is stored in an accounts receivable history table
that covers the past 15 years. You want to retrieve data in different forms, so you'll
use several SELECT statements.

create table employee

 (emp_id

 manager_id

 emp_fname

 emp_lname

 dept_id

 street

 city

 state

 zip_code

 phone

 status

 ss_number

 start_date

 termination_date

 birth_date

integer

integer

varchar(2-)

varchar(2-)

integer

varchar(4-)

char(2-)

char(-4)

char(-9)

char(1-),

char(-1),

integer

date

date,

date

not null,

not null,

not null,

not null,

not null,

not null,

not null,

not null,

not null,

not null,

not null);

A-4 CA-IDMS SQL Self-Training Guide

A.2 Table creation

Rather than access the very large history table every time you need to retrieve data,
you can define a temporary table that has data from just the past five years and
retrieve from this smaller table. This allows you quicker and more efficient access to
the data.

Appendix A. Sample Data Description Language A-5

A.3 Indexes

 A.3 Indexes

An index is a way to order a table logically to speed the retrieval of data.

For example, an index could be defined to order the EMPLOYEE table by employee
last name. Another index could be established to order the same table by social
security number.

An index is established on a column or combination of columns:

■ To improve processing efficiency

■ To prevent duplicate rows (when an index is specified as unique)

Identifying an index: The system administrator examines all the columns and the
programs that will run against the table to determine how the data is most likely to be
accessed.

For example, assume several programs access the EMPLOYEE table to list employees
alphabetically by last name. The system administrator would place an index on the
employee last name to allow these programs to access the data efficiently.

There can be several indexes associated with one table.

When you issue a SELECT statement, SQL uses the indexes to access the data as
efficiently as possible.

Creating an index: To create an index on employee last name, the system
administrator uses the following DDL statement:

create index lname_index

on employee (emp_lname);

Indexes can be added or dropped as necessary.

A-6 CA-IDMS SQL Self-Training Guide

A.4 Views

 A.4 Views

You don't always need to see an entire table. In fact, a table may contain data (like
salary information) that shouldn't be seen by everyone.

You may also frequently want to see two or more tables together.

In these situations, the systems administrator creates a view.

What is a view: A view is defined using DDL and can be:

■ A subset of columns and rows in one or more tables

■ Two or more joined tables

A view is represented internally by a stored command, not stored data. A view can
display data from one or more tables or from other views.

Each view has a name, just as a table has a name. You can use all SQL SELECT
commands that you use against a table against a view as well.

When you display the view, you see only the subset of columns and rows specified in
the view definition.

Here is a table and one view of it:

 POSITION

┌────────┬────────┬───────────────┐

│EMP_ID │JOB_ID │SALARY_AMOUNT │

├────────┼────────┼───────────────┤

│2-96 │4666 │4264- │

│ │ │ │

│2437 │456- │21944 │

│ │ │ │

│2598 │2-53 │1352- │

└──┬─────┴──┬─────┴───────────────┘

 └──────┐ └──────┐

 │ │

 POS_INFO │ │

 ┌───↓────┬───↓────┐

│EMP_ID │JOB_ID │

 ├────────┼────────┤

│2-96 │4666 │

│ │ │

│2437 │456- │

│ │ │

│2598 │2-53 │

 └────────┴────────┘

Appendix A. Sample Data Description Language A-7

A.4 Views

 A.5 Data integrity

Data integrity means correctness of data throughout the database. When you add data
to a table, you want that data to be correct and consistent with other data in the table.

If you add an employee to the EMPLOYEE table, you want to make sure that the
employee has an ID. Every employee must have an ID to keep the employee entries
consistent with one another. This is an example of data integrity.

In other cases, the value in a given column cannot be repeated. The employee ID is
unique for each employee; two employees cannot have the same ID. This is another
example of data integrity.

To ensure that the data is consistent across tables, integrity constraints are set up as
part of the data definition. The data you enter is checked against these constraints.

A-8 CA-IDMS SQL Self-Training Guide

Appendix B. Answers to Exercises

B.1 Chapter 1 . B-3
B.2 Chapter 2 . B-4
B.3 Chapter 3 . B-5
B.4 Chapter 4 . B-10
B.5 Chapter 5 . B-14
B.6 Chapter 6 . B-19
B.7 Chapter 7 . B-24
B.8 Chapter 8 . B-27

Appendix B. Answers to Exercises B-1

B-2 CA-IDMS SQL Self-Training Guide

B.1 Chapter 1

 B.1 Chapter 1

Review answers: These are the answers for 1.6, “Review” on page 1-11.

Description Term

1. Components of a relational database that hold
the data

2. Components of a table

3. A column or combination of columns holding
values that form the primary key of another
table

4. The types of operations you can perform
against a relational database

5. A way to establish a relationship between two
tables

6. A column or combination of columns that
uniquely identifies a row in a table

c. Tables

d. Rows and columns

a. Foreign key

e. Select, project, and join

a. Foreign key

b. Primary key

Appendix B. Answers to Exercises B-3

B.2 Chapter 2

 B.2 Chapter 2

Review answers: These are the answers for 2.5, “Review” on page 2-8.

1. SQL stands for Structured Query Language.

2. You use SQL data description language (DDL) statements to define tables.

3. You use SQL data manipulation language (DML) statements to change data in a
table.

4. The three SQL update operations are INSERT, UPDATE, and DELETE.

5. An interactive SQL statement ends with a delimiter/semicolon.

6. An interactive SQL statement begins with a verb.

7. An interactive SQL statement can span several lines.

8. You cannot issue several interactive SQL statements at once.

9. Interactive SQL gives you immediate results.

10. Embedded SQL returns the results to the program.

B-4 CA-IDMS SQL Self-Training Guide

B.3 Chapter 3

 B.3 Chapter 3

Exercise 3-1 answer: This is the answer for 3.2.1, “Exercise 3-1” on page 3-5.

select R

 from skill;

Exercise 3-2 answer: This is the answer for 3.3.1, “Exercise 3-2” on page 3-8.

select skill_id, skill_name

 from skill;

Exercise 3-3 answer: This is the answer for 3.3.2, “Exercise 3-3” on page 3-8.

select emp_fname, emp_lname, street, city

 from employee;

Exercise 3-4 answer: This is the answer for 3.4.1, “Exercise 3-4” on page 3-11.

select dept_id as "Department ID", dept_name as "Name"

 from department;

Exercise 3-5 answer: This is the answer for 3.5.1, “Exercise 3-5” on page 3-13.

select emp_id as "Employee",

salary_amount as "Salary",

bonus_percent as "Bonus Percentage",

bonus_percent R salary_amount as "Bonus Paid"

 from position;

Exercise 3-6 answer: This is the answer for 3.6.1, “Exercise 3-6” on page 3-26.

select distinct city

 from employee;

Exercise 3-7 answer: This is the answer for 3.7.1, “Exercise 3-7” on page 3-30.

select emp_id, emp_lname

 from employee

order by emp_lname desc;

Exercise 3-8 answer: This is the answer for 3.7.2, “Exercise 3-8” on page 3-31.

select skill_id, skill_name

 from skill

order by skill_id;

Exercise 3-9 answer: This is the answer for 3.7.3, “Exercise 3-9” on page 3-33.

select dept_id, emp_lname, emp_id

 from employee

order by dept_id, emp_lname;

Appendix B. Answers to Exercises B-5

B.3 Chapter 3

Exercise 3-10 answer: This is the answer for 3.7.4, “Exercise 3-10” on page 3-36.

select emp_id as "Employee",

salary_amount as "Base Salary",

bonus_percent as "Bonus Percentage",

bonus_percent R salary_amount as "Bonus Paid"

 from position

order by 4;

Review answers: These are the answers for 3.8, “Review” on page 3-38.

1. How many columns would be retrieved by the following statement:

select R from sample_table;

 c. All

2. How can you limit the number of columns returned by your SELECT statement?

b. List the columns you want to see

3. How can you give heading names to columns?

b. Use AS after the column name and specify the heading

4. Given a table called SUPPLY_PRICE and a column in that table called
PART_NUMBER, which of the following statements will find the number of
unique part numbers in the table?

c. select distinct part_number from supply_price;

5. How can you name the column you want to sort by?

a. Use the column name

b. Use the heading name

d. Use the column number

Scenario answers: These are the answers for 3.9, “Scenarios” on page 3-39.

1. You need to list all jobs the company has for a government screen. The screen
should show job ID, job title, and minimum and maximum rate for the job. Use
the JOB table, checking Appendix C for table descriptions.

select job_id, job_title, min_rate, max_rate

 from job;

B-6 CA-IDMS SQL Self-Training Guide

B.3 Chapter 3

S T
 JOB_ID JOB_TITLE MIN_RATE MAX_RATE

 ------ --------- -------- --------

 8--1 Vice President 9----.-- 136---.--

 2-77 Purch Clerk 17---.-- 3----.--

 9--1 President 111---.-- 19----.--

3-51 Data Entry Clerk 8.5- 11.45

 47-- Purch Agnt 33---.-- 6----.--

 3-29 Computer Operator 25---.-- 44---.--

6-11 Manager - Acctng 594--.-- 121---.--

 413- Benefits Analyst 35---.-- 56---.--

 4666 Sr Mechanic 41---.-- 91---.--

 4123 Recruiter 35---.-- 56---.--

 5555 Salesperson 3----.-- 79---.--

4-25 Writer - Mktng 31---.-- 5----.--

 4-23 Accountant 44---.-- 12----.--

 2-51 AP Clerk 8.8- 14.6-

 4734 Mktng Admin 25---.-- 62---.--

511- CUST SER MGR 4----.-- 1-8---.--

 2-53 AR Clerk 8.8- 14.6-

6--4 Manager - HR 66---.-- 138---.--

5111 CUST SER REP 27---.-- 54---.--

 4-12 Admin Asst 21---.-- 44---.--

 2-55 PAYROLL CLERK 17---.-- 3----.--

 456- Mechanic 11.45 21.--

 589- Appraisal Spec 45---.-- 7----.--

 3333 Sales Trainee 216--.-- 39---.--

6-21 Manager - Mktng 76---.-- 15----.--

 25 rows processed

W X

2. The screen you just created (in Scenario 1) has all the necessary information but is
difficult to read because it is not sorted. Modify the SELECT statement to create
the same screen sorted by job title.

select job_id, job_title, min_rate, max_rate

 from job

order by job_title;

Appendix B. Answers to Exercises B-7

B.3 Chapter 3

S T
 JOB_ID JOB_TITLE MIN_RATE MAX_RATE

 ------ --------- -------- --------

 4-23 Accountant 44---.-- 12----.--

 4-12 Admin Asst 21---.-- 44---.--

 589- Appraisal Spec 45---.-- 7----.--

 2-51 AP Clerk 8.8- 14.6-

 2-53 AR Clerk 8.8- 14.6-

 413- Benefits Analyst 35---.-- 56---.--

 3-29 Computer Operator 25---.-- 44---.--

511- CUST SER MGR 4----.-- 1-8---.--

5111 CUST SER REP 27---.-- 54---.--

3-51 Data Entry Clerk 8.5- 11.45

6-11 Manager - Acctng 594--.-- 121---.--

6--4 Manager - HR 66---.-- 138---.--

6-21 Manager - Mktng 76---.-- 15----.--

 456- Mechanic 11.45 21.--

 4734 Mktng Admin 25---.-- 62---.--

 9--1 President 111---.-- 19----.--

 47-- Purch Agnt 33---.-- 6----.--

 2-77 Purch Clerk 17---.-- 3----.--

 2-55 PAYROLL CLERK 17---.-- 3----.--

 4123 Recruiter 35---.-- 56---.--

 3333 Sales Trainee 216--.-- 39---.--

 5555 Salesperson 3----.-- 79---.--

 4666 Sr Mechanic 41---.-- 91---.--

 8--1 Vice President 9----.-- 136---.--

4-25 Writer - Mktng 31---.-- 5----.--

 25 rows processed

W X

3. Periodically, a company list is produced showing each department and all
employees assigned to that department. This list should be sorted first by
department ID and then by employee ID within each department. Display
department ID, employee ID, and employee last name. Create the appropriate
SQL SELECT statement to produce this list using the EMPLOYEE table.

select dept_id, emp_id, emp_lname

 from employee

order by dept_id, emp_id;

S T
DEPT_ID EMP_ID EMP_LNAME

------- ------ ---------

 11-- 2246 Hamel

 11-- 47-3 Halloran

 11-- 5--8 Fordman

 111- 1765 Alexander

 111- 21-6 Widman

 112- 2--4 Johnson

 112- 2898 Umidy

 112- 3294 Johnson

 112- 3338 White

 22-- 218- Albertini

 22-- 2448 Lynn

 22-- 37-4 Moore

 22-- 3767 Lowe

 22-- 466- MacGregor

 .

 .

 .

55 rows processed

W X

B-8 CA-IDMS SQL Self-Training Guide

B.3 Chapter 3

4. The screen you just created is very useful except that the headings are difficult to
understand. Rewrite the statement so that the column names are "Department",
"Employee ID", and "Last Name".

select dept_id as "Department", emp_id as "Employee ID",

emp_lname as "Last Name"

 from employee

order by 1, 2;

S T
Department Employee ID Last Name

---------- ----------- ---------

 11-- 2246 Hamel

 11-- 47-3 Halloran

 11-- 5--8 Fordman

 111- 1765 Alexander

 111- 21-6 Widman

 112- 2--4 Johnson

 112- 2898 Umidy

 112- 3294 Johnson

 112- 3338 White

 22-- 218- Albertini

 22-- 2448 Lynn

 22-- 37-4 Moore

 22-- 3767 Lowe

 22-- 466- MacGregor

 .

 .

 .

55 rows processed

W X

Appendix B. Answers to Exercises B-9

B.4 Chapter 4

 B.4 Chapter 4

Exercise 4-1 answer: This is the answer for 4.4.1, “Exercise 4-1” on page 4-7.

select emp_id, emp_fname, emp_lname

 from employee

where emp_id = 51-3;

Exercise 4-2 answer: This is the answer for 4.4.2, “Exercise 4-2” on page 4-8.

select emp_id, job_id, salary_amount

 from position

where salary_amount > 1-----;

Exercise 4-3 answer: This is the answer for 4.4.3, “Exercise 4-3” on page 4-9.

select emp_id, emp_fname, emp_lname, city

 from employee

where city = 'Boston'

order by emp_id;

Exercise 4-4 answer: This is the answer for 4.4.4, “Exercise 4-4” on page 4-9.

select emp_id, emp_fname, emp_lname, city

 from employee

where not city = 'Boston';

Exercise 4-5 answer: This is the answer for 4.5.1, “Exercise 4-5” on page 4-11.

select emp_id

 from position

where bonus_percent is null;

Exercise 4-6 answer: This is the answer for 4.5.2, “Exercise 4-6” on page 4-13.

select emp_id, emp_fname, emp_lname, phone

 from employee

where phone is not null;

Exercise 4-7 answer: This is the answer for 4.5.3, “Exercise 4-7” on page 4-15.

select job_id, emp_id, salary_amount

 from position

where salary_amount between 2---- and 35---;

Exercise 4-8 answer: This is the answer for 4.5.4, “Exercise 4-8” on page 4-17.

select emp_id, salary_amount

 from position

where salary_amount in (416--, 4524-, 5-44-);

Exercise 4-9 answer: This is the answer for 4.5.5, “Exercise 4-9” on page 4-19.

select dept_id, dept_name from department

where dept_name like '%NEW CARS%';

Exercise 4-10 answer: This is the answer for 4.5.6, “Exercise 4-10” on page 4-19.

select dept_id, dept_name from department

where dept_name not like '%NEW CARS%';

B-10 CA-IDMS SQL Self-Training Guide

B.4 Chapter 4

Exercise 4-11 answer: This is the answer for 4.6.1, “Exercise 4-11” on page 4-21.

select proj_id, est_man_hours - act_man_hours

 from project

where est_man_hours - act_man_hours > -;

Exercise 4-12 answer: This is the answer for 4.7.1, “Exercise 4-12” on page 4-22.

select emp_id, city, phone

 from employee

where city in ('Camden', 'Brookline', 'Canton')

or phone is not null;

Review answers: These are the answers for 4.8, “Review” on page 4-27.

1. The clause that allows the user to specify search conditions that filter the rows to
be selected is:

a. The WHERE clause

2. What are the components of the WHERE clause?

b. The keyword WHERE

c. A search condition

3. You can compare a character column to a

 b. Mask

4. Masks are used with

c. The LIKE predicate

5. Which of the following are mask characters?

 b. _

 d. %

6. The IS NULL predicate causes:

b. The retrieval of rows where a column contains no value

7. Parentheses are used to:

a. Set up the sequence of arithmetic evaluation

b. Set up the sequence of evaluation of AND and OR in a compound
WHERE clause

Appendix B. Answers to Exercises B-11

B.4 Chapter 4

Scenario answers: These are the answers for 4.9, “Scenarios” on page 4-29.

1. Periodically, a list is published giving divisions and their departments. A new
department was recently added to division D09, so a new list for that division is
needed. Use the DEPARTMENT table and show division code, department ID,
and department name. Order by department ID.

select div_code, dept_id, dept_name

 from department

where div_code = 'D-9'

order by dept_id;

S T
DIV_CODE DEPT_ID DEPT_NAME

-------- ------- ---------

D-9 45-- HUMAN RESOURCES

D-9 49-- MIS

D-9 5--- CORPORATE ACCOUNTING

D-9 52-- CORPORATE MARKETING

D-9 6--- LEGAL

D-9 62-- CORPORATE ADMINISTRATION

6 rows processed

W X

2. All Commonwealth Auto employees whose last names begin with L and M are
due to have flu shots. The medical office needs to have the complete names of
these individuals and the department to which each is assigned. Sort the list by
last name. (Use the EMPLOYEE table.)

select emp_lname, emp_fname, dept_id

 from employee

where emp_lname like 'L%' or emp_lname like 'M%'

order by emp_lname;

S T
EMP_LNAME EMP_FNAME DEPT_ID

--------- --------- -------

Loren Martin 46--

Lowe Frank 22--

Lynn David 22--

MacGregor Bruce 22--

Mills Thomas 62--

Moore Richard 22--

6 rows processed

W X

3. The Marketing department has a large project coming up and needs employees
who have at least a medium level of competence (greater than 02) in skill 3333.
Display employee ID and level of competence for each employee using the
EXPERTISE table.

select emp_id, skill_level

 from expertise

where skill_id = 3333

and skill_level > '-2';

B-12 CA-IDMS SQL Self-Training Guide

B.4 Chapter 4

S T
EMP_ID SKILL_LEVEL

------ -----------

 2437 -4

 3288 -4

2 rows processed

W X

4. In order to identify employees involved in media projects, the Human Resources
department needs a list of employees associated with a project ID that begins with
P (indicating media-related). Order the list by employee ID. (Use the
ASSIGNMENT table to find this information.)

select emp_id, proj_id

 from assignment

where proj_id like 'P%'

order by emp_id;

S T
EMP_ID PROJ_ID

------ -------

 2894 P634

 3411 P634

2 rows processed

W X

5. The budget group needs a list of employees who hold a position that pays less
than $25,000. Show employee ID and salary.

select emp_id, salary_amount

 from position

where salary_amount < 25---;

S T
 EMP_ID SALARY_AMOUNT

 ------ -------------

 3338 22-48.84

 3767 22--.--

 466- 24---.--

 1765 18--1.--

 218- 19---.1-

 21-6 2392-.--

 37-4 2288-.--

 4--8 24441.--

 47-3 24857.--

 9 rows processed

W X

Appendix B. Answers to Exercises B-13

B.5 Chapter 5

 B.5 Chapter 5

Exercise 5-1 answer: This is the answer for 5.2.1, “Exercise 5-1” on page 5-5.

select avg(num_dependents)

 from coverage;

Exercise 5-2 answer: This is the answer for 5.2.2, “Exercise 5-2” on page 5-5.

select avg(vac_accrued)

 from benefits

where fiscal_year = 1999;

Exercise 5-3 answer: This is the answer for 5.2.3, “Exercise 5-3” on page 5-6.

select count(R)

 from skill;

Exercise 5-4 answer: This is the answer for 5.2.4, “Exercise 5-4” on page 5-7.

select count(phone)

 from employee

where dept_id = 52--;

Exercise 5-5 answer: This is the answer for 5.2.5, “Exercise 5-5” on page 5-8.

select max(salary_amount)

 from position

where job_id = 3333;

Exercise 5-6 answer: This is the answer for 5.2.6, “Exercise 5-6” on page 5-8.

select min(sick_taken)

 from benefits;

Exercise 5-7 answer: This is the answer for 5.2.7, “Exercise 5-7” on page 5-9.

select sum(vac_taken)

 from benefits;

Exercise 5-8 answer: This is the answer for 5.3.1, “Exercise 5-8” on page 5-10.

select count(distinct proj_id)

 from consultant;

Exercise 5-9 answer: This is the answer for 5.4.1, “Exercise 5-9” on page 5-12.

select dept_id, count(emp_id)

 from employee

group by dept_id;

Exercise 5-10 answer: This is the answer for 5.4.2, “Exercise 5-10” on page 5-12.

select job_id, sum(salary_amount)

 from position

group by job_id;

Exercise 5-11 answer: This is the answer for 5.5.1, “Exercise 5-11” on page 5-15.

B-14 CA-IDMS SQL Self-Training Guide

B.5 Chapter 5

select city, count(emp_id)

 from employee

group by city

having count(emp_id) > 2;

Exercise 5-12 answer: This is the answer for 5.5.2, “Exercise 5-12” on page 5-16.

select job_id, avg(salary_amount)

 from position

group by job_id

having avg(salary_amount) > 25---;

Exercise 5-13 answer: This is the answer for 5.6.1, “Exercise 5-13” on page 5-17.

select job_id, avg(salary_amount) as "Average Salary"

 from position

group by job_id

having avg(salary_amount) > 25---;

Review answers: These are the answers for 5.7, “Review” on page 5-18.

1. You use aggregate functions to perform calculations within a SELECT statement.

2. An aggregate function can be used instead of a column name with SELECT or in
the HAVING clause.

3. When the aggregate function AVG encounters a null value, it ignores the row.

4. The HAVING clause acts as a search condition with an aggregate function.

5. You rename an aggregate function column heading by using AS and the heading
you want.

Scenario answers: These are the answers for 5.8, “Scenarios” on page 5-19.

1. In order to plan for the Christmas party for Commonwealth Auto, the Human
Resources department needs a count of employees by department. (The
EMPLOYEE table contains this information.)

select dept_id, count(emp_id)

 from employee

group by dept_id;

S T
DEPT_ID (EXPR)

------- ------

 11-- 3

 111- 2

 112- 4

 22-- 5

 221- 8

 351- 2

 352- 1

 353- 2

 45-- 3

 46-- 9

 5--- 3

 51-- 2

 52-- 5

 62-- 6

14 rows processed

W X

Appendix B. Answers to Exercises B-15

B.5 Chapter 5

2. As part of its salary research, the Human Resources department needs to know the
minimum and maximum salaries being earned for each job ID in the company.
(Use the POSITION table.)

select job_id, min(salary_amount), max(salary_amount)

 from position

group by job_id;

S T
JOB_ID (EXPR) (EXPR)

------ ------ ------

2-51 <null> <null>

2-53 <null> <null>

2-77 18--1.-- 29536.--

 3333 22--.-- 3-68-.--

4-12 286-1.8- 44--1.4-

4-23 74776.-- 74776.--

4-25 43888.-- 43888.--

4123 49921.76 49921.76

413- 45241.94 45241.94

456- <null> <null>

4666 8528-.-- 8528-.--

47-- 47--9.34 59488.--

4734 53665.-- 57824.5-

511- 56977.8- 56977.8-

5555 364--.-- 76961.--

589- 416--.-- 68-16.--

6--4 11-448.-- 11-448.--

6-11 94953.52 94953.52

6-21 111593.-- 111593.--

8--1 117832.68 117832.68

9--1 146432.-- 146432.--

 21 rows processed

W X

3. Upper management needs to know how many subordinate employees there are for
each manager in order to evaluate the span of control within the company. The
EMPLOYEE table contains this information.

select manager_id, count(emp_id)

 from employee

group by manager_id;

B-16 CA-IDMS SQL Self-Training Guide

B.5 Chapter 5

S T
 MANAGER_ID (EXPR)

 ---------- ------

 1--3 5

 1-34 3

 1234 1

 1765 1

 2--4 2

 2-1- 6

 2-96 3

 218- 3

 22-9 1

 2246 2

 2448 1

 2461 2

 2466 6

 2894 7

 3-82 1

 3222 2

 3778 1

 3991 1

 4321 1

 4358 1

 <null> 5

 21 rows processed

W X

4. A project is coming up that requires project members having the skill ID 3333
(body work). The project leader needs to find out how many employees have a
skill level greater than 02 for this skill to see whether he needs to hire consultants
to staff the project. Keep in mind that the SKILL_LEVEL column contains
character data. (Use the EXPERTISE table.)

select count(emp_id)

 from expertise

where skill_id = 3333

and skill_level > '-2';

S T
 (EXPR)

 2

1 row processed

W X

5. The Human Resources department is conducting research into salaries. They have
asked you for a screen showing:

 ■ Job ID

■ Average salary by job

■ Minimum salary by job

■ Maximum salary by job

They need this screen only for current positions with a job ID less than 4000
(indicating training and clerical positions) where the average salary is less than
$25,000. Use the POSITION table and rename the column headings so that the
screen makes sense.

Appendix B. Answers to Exercises B-17

B.5 Chapter 5

select job_id as "Job",

avg(salary_amount) as "Average Salary",

min(salary_amount) as "Minimum Salary",

max(salary_amount) as "Maximum Salary"

 from position

where job_id < 4---

group by job_id

having avg(salary_amount) < 25---;

S T
 Job Average Salary Minimum Salary Maximum Salary

--- -------------- -------------- --------------

2-77 23672.56 18--1.-- 29536.--

3333 2313-.-5 22--.-- 3-68-.--

2 rows processed

W X

6. The training group is concerned that there are few people in the company who
have certain crucial skills. They have asked you to give them a screen listing the
number of employees who have either a medium level of competence (02 or
above) for skill 3333 (body work) or a high level of competence (04) for skill
4444 (assembly). The screen should list a skill only if there are more than two
employees that fit that category.

select skill_id, count(emp_id)

 from expertise

where (skill_id = 3333 and skill_level >= '-2')

or (skill_id = 4444 and skill_level = '-4')

group by skill_id

having count(emp_id) > 2;

S T
 SKILL_ID (EXPR)

 -------- ------

 3333 3

 1 row processed

W X

B-18 CA-IDMS SQL Self-Training Guide

B.6 Chapter 6

 B.6 Chapter 6

Exercise 6-1 answer: This is the answer for 6.2.1.1, “Exercise 6-1” on page 6-6.

select div_code, div_name, emp_id, emp_lname, emp_fname

from employee, division

 where emp_id=div_head_id;

Exercise 6-2 answer: This is the answer for 6.2.3.1, “Exercise 6-2” on page 6-9.

select expertise.emp_id, emp_lname,

 emp_fname, skill_id

from demoproj.expertise, demoempl.employee

where expertise.emp_id = employee.emp_id;

Exercise 6-3 answer: This is the answer for 6.2.4.1, “Exercise 6-3” on page 6-10.

select expertise.emp_id, emp_lname, emp_fname, skill_id

from demoproj.expertise, demoempl.employee

where employee.emp_id = expertise.emp_id

order by emp_lname desc, emp_fname desc;

Exercise 6-4 answer: This is the answer for 6.2.6, “Exercise 6-4” on page 6-12.

select distinct consultant.manager_id, emp_lname, emp_fname

from demoproj.consultant, demoempl.employee

where consultant.manager_id = employee.emp_id;

Review answers: These are the answers for 6.5, “Review” on page 6-18.

Statement Term

1. Needed to join two or more tables b. Common columns

2. Resolves the problem of joining

table columns that have the

 same name

f. Aliases

3. Where the joining is specified a. The WHERE clause

4. Where an alias is identified d. The FROM clause

5. Used to append one table to another c. The UNION clause

Appendix B. Answers to Exercises B-19

B.6 Chapter 6

Scenario answers: These are the answers for 6.6, “Scenarios” on page 6-19.

1. Management would like to see which employees are involved in which projects.
Write a SELECT statement to retrieve this information by joining the
ASSIGNMENT and PROJECT tables that contain the data. Display the
information by project description.

select assignment.proj_id, proj_desc, emp_id

from assignment, project

where project.proj_id = assignment.proj_id

order by proj_desc;

S T
PROJ_ID PROJ_DESC EMP_ID

------- --------- ------

C2-3 Consumer study 2894

C24- Service study 4358

D88- Systems analysis 2466

D88- Systems analysis 9388

P634 TV ads - WTVK 3411

5 rows processed

W X

2. The Human Resources department needs a list of employees and their remaining
vacation time. This information is contained in the EMPLOYEE and BENEFITS
tables. Display employee ID and last name as well as the vacation time remaining
in fiscal year 2000. Order your screen by employee ID.

select benefits.emp_id, emp_lname,

(vac_accrued - vac_taken)

from benefits, employee

where benefits.emp_id = employee.emp_id

and fiscal_year = 2---

order by benefits.emp_id;

B-20 CA-IDMS SQL Self-Training Guide

B.6 Chapter 6

S T
 EMP_ID EMP_LNAME (EXPR)

 ------ --------- ------

 1--3 Baldwin 1-8.--

 1-34 Gallway 36.5-

 1234 Mills 68.--

 1765 Alexander 76.5-

 2--4 Johnson 68.5-

 2-1- Parker 92.75

 2-96 Carlson 28.5-

 21-6 Widman 76.5-

 2174 Zander 6-.--

 218- Albertini 1-8.5-

 22-9 Smith 76.5-

 2246 Hamel 36.5-

 2424 Wilder 6-.5-

 2437 Thompson 76.--

 2448 Lynn 55.5-

 2461 Anderson 36.--

 2466 Bennett 68.5-

 2598 Jacobs 6-.--

 2781 Thurston 16.--

 2894 Griffin 76.--

 3-82 Brooks 24.--

 3118 Wooding 68.--

 3222 Voltmer 76.--

 3288 Sampson 2-.--

 3294 Johnson 6-.--

 3338 White 76.--

 3341 Smith 43.5-

 3411 Williams 8.--

 3433 Crane 36.--

 3449 Taylor 2-.--

 37-4 Moore 28.--

 3764 Park -4.--

 3767 Lowe 8.--

 3769 Donelson 76.--

 3778 Ferndale 36.--

 3841 Cromwell 76.--

 3991 Wilkins 8.--

 4--1 Thompson 36.--

 4--2 Roy 36.--

 4--8 Clark 76.--

 4-27 Courtney 36.--

 4321 Bradley 28.--

 4358 Robinson 76.--

 4456 Thompson 36.--

 466- MacGregor 2-.--

 47-3 Halloran 38.75

 4773 Dexter 8.--

 4962 White 6-.--

 5--8 Fordman 14.5-

 5-9- Wills 54.--

 51-3 Ferguson 54.--

 51 rows processed

W X

3. More statistics are being gathered on vacation hours. You have been asked to
produce a screen of average vacation hours taken for each department. Display
department ID and average vacation taken for fiscal 1999. Order the screen by
department ID.

select dept_id, avg(vac_taken)

from benefits, employee

where benefits.emp_id = employee.emp_id

and fiscal_year = 1999

group by dept_id

order by dept_id;

Appendix B. Answers to Exercises B-21

B.6 Chapter 6

S T
 DEPT_ID (EXPR)

 ------- ------

 11-- 1-6.66

 111- 16-.--

 112- 133.33

 22-- 12-.--

 221- 115.--

 351- 1--.--

 352- 12-.--

 353- 12-.--

 45-- 133.33

 46-- 99.42

 5--- 84.--

 51-- 12-.--

 52-- 1--.--

 62-- 86.66

 14 rows processed

W X

4. The budget committee needs a list of job titles, names of employees holding those
jobs, and current salaries of those employees. They are interested only in jobs
offering salaries of more than $55,000. Order your list by job title and include the
job ID.

select j.job_id, job_title, emp_lname,

 emp_fname, salary_amount

from job j, position p, employee e

where j.job_id = p.job_id

and p.emp_id = e.emp_id

and salary_amount > 55---

order by job_title;

S T
JOB_ID JOB_TITLE EMP_LNAME EMP_FNAME SALARY_AMOUNT

------ --------- --------- --------- -------------

 4-23 Accountant Taylor Cynthia 74776.--

 589- Appraisal Spec Smith Michael 66144.--

 589- Appraisal Spec Brooks John 68-16.--

511- CUST SER MGR Bradley George 56977.8-

6-11 Manager - Acctng Bennett Patricia 94953.52

6--4 Manager - HR Voltmer Louise 11-448.--

6-21 Manager - Mktng Griffin William 111593.--

 4734 Mktng Admin Robinson Judith 57824.5-

 9--1 President Baldwin James 146432.--

47-- Purch Agnt Hamel Marylou 59488.--

 47-- Purch Agnt Johnson Eleanor 5928-.--

 5555 Salesperson Albertini Joan 76961.--

5555 Salesperson Parker Cora 7644-.--

 5555 Salesperson Lynn David 7-72-.--

 4666 Sr Mechanic Carlson Thomas 8528-.--

 8--1 Vice President Mills Thomas 117832.68

16 rows processed

W X

5. Employee 2004 has just had a review and is due to get a pay increase. The
increase is stored as REVIEW_PERCENT in the BENEFITS table. Employee
2004's manager has asked you to show her how much the increase is in dollar
amount. To get this information, you need to multiply the current salary by the
review percent. Show employee ID, current salary, percent increase, and increase
as a dollar amount.

B-22 CA-IDMS SQL Self-Training Guide

B.6 Chapter 6

select position.emp_id, salary_amount,

review_percent, (review_percent R salary_amount)

from benefits, position

where "position".emp_id = benefits.emp_id

and "position".emp_id = 2--4

and fiscal_year = 2---

and finish_date is null;

Notes:

POSITION is the table name and an SQL keyword; therefore, when the
POSITION table name is used as an identifier, it must be enclosed in double
quotation marks.

As an alternative, you can use an alias for the table name. For example:

select position.emp_id, salary_amount,

review_percent, (review_percent R salary_amount)

from benefits b, position p

where p.emp_id = b.emp_id

and p.emp_id = 2--4

and fiscal_year = 2---

and finish_date is null;

S T
 EMP_ID SALARY_AMOUNT REVIEW_PERCENT (EXPR)

 ------ ------------- -------------- ------

 2--4 5928-.-- -.-3- 1778.4----

 1 row processed

W X

Appendix B. Answers to Exercises B-23

B.7 Chapter 7

 B.7 Chapter 7

Exercise 7-1 answer: This is the answer for 7.3.1, “Exercise 7-1” on page 7-5.

 Exercises

select distinct dept_id

 from employee

where emp_id in

 (select emp_id

 from benefits

where (vac_accrued - vac_taken) > 8-)

and fiscal_year = 1999;

Exercise 7-2 answer: This is the answer for 7.4.1, “Exercise 7-2” on page 7-7.

select emp_id, num_dependents

 from coverage

where num_dependents >

 (select avg(num_dependents)

 from coverage);

Exercise 7-2b answer: This is the answer for 7.4.1.1, “Exercise 7-2B” on
page 7-8.

select distinct(emp_id), num_dependents

 from coverage

where num_dependents >

 (select avg(num_dependents)

 from coverage);

Exercise 7-3 answer: This is the answer for 7.5.1, “Exercise 7-3” on page 7-11.

select distinct dept_id

 from employee

 where exists

 (select R

 from position

where salary_amount > 5----

and employee.emp_id = "position".emp_id);

Or,

select distinct dept_id

 from employee

 where exists

 (select R

from position p

where salary_amount > 5----

and employee.emp_id = p.emp_id);

Review answers: These are the answers for 7.7, “Review” on page 7-15.

1. A nested SELECT statement is also known as a subquery.

2. A subquery is located in a WHERE clause.

3. A subquery must be enclosed in parentheses.

4. You use the EXISTS predicate to retrieve rows based on the existence of rows in
another table.

B-24 CA-IDMS SQL Self-Training Guide

B.7 Chapter 7

5. When using an EXISTS predicate, the outer SELECT statement and the subquery
are linked by matching columns in the WHERE clause in the subquery.

6. You can use an asterisk (*) in the subquery if you are using the EXISTS
keyword.

Scenario answers: These are the answers for 7.8, “Scenarios” on page 7-16.

1. For tax purposes, the Accounting department needs to keep track of all jobs for
which employees earn more than $65,000. A list of job titles is sufficient. (Use
the JOB and POSITION tables.)

select job_title

 from job

where job_id in

(select job_id from position

where salary_amount > 65---);

S T
JOB_TITLE

Accountant

Appraisal Spec

Manager - Acctng

Manager - HR

Manager - Mktng

President

Salesperson

Sr Mechanic

Vice President

9 rows processed

W X

2. Upper management is concerned about the equality of salaries within
Commonwealth Auto. They need to have a list by name of all jobs for which at
least one employee earns less than $35,000. (Use the JOB and POSITION tables.)

select job_title

 from job

where job_id in

(select job_id from position

where salary_amount < 35---);

S T
 JOB_TITLE

 Admin Asst

 Purch Clerk

 Sales Trainee

 3 rows processed

W X

3. Over the years, lots of department information has been added to the database.
The Human Resources department is responsible for this portion of the database
and knows that there are some departments still listed for which there are no
longer any associated employees. They have asked you for a list showing these
departments. Order the list by department ID. (Use the DEPARTMENT and
EMPLOYEE tables.)

Appendix B. Answers to Exercises B-25

B.7 Chapter 7

select dept_id

 from department

where not exists

 (select R

 from employee

where employee.dept_id = department.dept_id)

order by dept_id;

S T
DEPT_ID

 42--

 49--

 6---

3 rows processed

W X

B-26 CA-IDMS SQL Self-Training Guide

B.8 Chapter 8

 B.8 Chapter 8

Exercise 8-1 answer: This is the answer for 8.2.1, “Exercise 8-1” on page 8-4.

insert into department

values (6-6-, null, 'D-9', 'Claims');

select R

 from department

order by dept_id;

Exercise 8-2 answer: This is the answer for 8.2.2, “Exercise 8-2” on page 8-6.

insert into department

values (dept_id, null, 'div_code', 'dept_name');

insert into department

values (dept_id, null, 'div_code', 'dept_name');

select R

 from department

order by dept_id;

Exercise 8-3 answer: This is the answer for 8.2.3, “Exercise 8-3” on page 8-6.

insert into project (proj_id, proj_desc)

values ('P434', 'Mass Media Campaign Blitz');

select proj_id, proj_desc

 from project

order by proj_id;

Exercise 8-4 answer: This is the answer for 8.3.1, “Exercise 8-4” on page 8-8.

select emp_id, vac_accrued

 from benefits

where fiscal_year = 2---

 order by emp_id;

Exercise 8-5 answer: This is the answer for 8.3.2, “Exercise 8-5” on page 8-10.

update department

set dept_name = 'Lost Claims'

where dept_id = 6-6-;

select dept_id, dept_name

 from department

where dept_id = 6-6-;

Exercise 8-6 answer: This is the answer for 8.3.3, “Exercise 8-6” on page 8-10.

update employee

set dept_id = 62--

where emp_id = 3433;

select emp_id, dept_id

 from employee

where emp_id = 3433;

Exercise 8-7 answer: This is the answer for 8.3.4, “Exercise 8-7” on page 8-11.

Appendix B. Answers to Exercises B-27

B.8 Chapter 8

update employee

set city = 'Framingham'

where emp_id in (1-34, 37-4, 466-);

select emp_id, city

 from employee

where emp_id in (3433, 8377, 1-34);

Exercise 8-8 answer: This is the answer for 8.4.1, “Exercise 8-8” on page 8-12.

delete from department

where dept_id = 5-5-;

select R

 from department

order by dept_id;

Exercise 8-9 answer: This is the answer for 8.4.2, “Exercise 8-9” on page 8-13.

delete from department

where dept_id = 6-6-;

select R

 from department

order by dept_id;

Review answers: These are the answers for 8.5, “Review” on page 8-14.

1. You use a SELECT statement with INSERT to:

a. Copy specific rows from one table to another

2. If you don't have a value for every column you are adding to a table, you can:

a. Identify only the columns you are going to insert values into

b. Use the keyword NULL for the columns where the value is unknown

3. You can update all rows in a table by:

b. Omitting the WHERE clause

4. You can update selected rows in a table by:

c. Specifying a search condition in a WHERE clause

5. You are updating all columns in a table but do not know the specific value to put
into one column. You can:

c. Use the keyword NULL for the column where the value is unknown

6. If you do not have a WHERE clause in a DELETE statement:

c. All the rows are deleted but the table remains

B-28 CA-IDMS SQL Self-Training Guide

 Appendix C. Table Descriptions

C.1 Table names and descriptions . C-3

Appendix C. Table Descriptions C-1

C-2 CA-IDMS SQL Self-Training Guide

C.1 Table names and descriptions

C.1 Table names and descriptions

 ASSIGNMENT

 BENEFITS

EMP_ID Unique employee ID

PROJ_ID ID of project to which consultant is assigned

START_DATE Date employee was assigned to the project

END_DATE Date employee completed work on the project

FISCAL_YEAR Fiscal year for which this data applies

EMP_ID Unique employee ID

VAC_ACCRUED Vacation hours accrued to date

VAC_TAKEN Vacation hours taken to date

SICK_ACCRUED Sick days accrued to date

SICK_TAKEN Sick days taken to date

STOCK_PERCENT Percentage of earnings allocated to stock purchase

STOCK_AMOUNT Year-to-date amount deducted for stock purchase

LAST_REVIEW_DATE Date of last employee review

REVIEW_PERCENT Percent increase at last review

PROMO_DATE Date of last promotion

RETIRE_PLAN Retirement fund identifier: STOCK, BONDS,
401K

RETIRE_PERCENT Percentage of earnings deducted for retirement

BONUS_AMOUNT Amount of last bonus

COMP_ACCRUED Hours of compensation time accrued

COMP_TAKEN Hours of compensation time taken

EDUC_LEVEL Level of education: GED, HSDIP, JRCOLL,
COLL, MAS, PHD

UNION_ID Union identification number

UNION_DUES Amount of dues deducted per pay period

Appendix C. Table Descriptions C-3

C.1 Table names and descriptions

 CONSULTANT

 COVERAGE

 DEPARTMENT

CON_ID Unique consultant ID

CON_FNAME Consultant's first name

CON_LNAME Consultant's last name

MANAGER_ID Employee ID of consultant's manager

DEPT_ID ID of department to which consultant is assigned

PROJ_ID ID of project to which consultant is assigned

STREET Consultant's street address

CITY Consultant's city

STATE Consultant's state

ZIP_CODE Consultant's zip code

PHONE Consultant's phone

BIRTH_DATE Birth date

START_DATE Consultant's date of hire

SS_NUMBER Social security number

RATE Hourly rate of pay

PLAN_CODE Code of insurance plan providing the coverage

EMP_ID Unique employee ID

SELECTION_DATE Date employee selected this insurance plan

TERMINATION_DATE Date employee terminated this insurance plan; if
null, plan is still in force

NUM_DEPENDENTS Number of dependents covered under this
insurance plan

DEPT_ID Unique department ID

DEPT_HEAD_ID Employee ID of department head

DIV_CODE Code of the division to which this department
belongs

DEPT_NAME Department name

C-4 CA-IDMS SQL Self-Training Guide

C.1 Table names and descriptions

 DIVISION

 EMPLOYEE

 EXPERTISE

DIV_CODE Unique division ID

DIV_HEAD_ID Employee ID of division head

DIV_NAME Division name

EMP_ID Unique employee ID

MANAGER_ID Employee ID of employee's manager

EMP_FNAME Employee's first name

EMP_LNAME Employee's last name

DEPT_ID ID of department to which employee is assigned

STREET Employee's street address

CITY Employee's city

STATE Employee's state

ZIP_CODE Employee's zip code

PHONE Employee's phone

STATUS Status of employee: (A) Active; (S) Short-term
disability; (L) Long term disability

SS_NUMBER Social security number

START_DATE Employee's date of hire

TERMINATION_DATE Date of termination

BIRTH_DATE Birth date

EMP_ID Employee ID

SKILL_ID Skill ID

SKILL_LEVEL Level of ability in this skill: 01 (low) to 04 (high)

EXP_DATE Date this level of ability was achieved

Appendix C. Table Descriptions C-5

C.1 Table names and descriptions

 INSURANCE_PLAN

 JOB

PLAN_CODE Unique plan code for company offering the
insurance

COMP_NAME Name of insurance company

STREET Street address of insurance company

CITY City address of insurance company

STATE State address of insurance company

ZIP_CODE Zip code of insurance company

PHONE Telephone number of insurance company

GROUP_NUMBER Commonwealth's group number for this insurance
company

DEDUCT Dollar amount deductible per year for this
insurance plan

MAX_LIFE_BENEFIT Maximum dollar amount to be paid to insured
employee

FAMILY_COST Amount deducted per paycheck for family
coverage

DEP_COST Additional amount deducted per paycheck per
dependent

EFF_DATE Date this coverage plan becomes effective

JOB_ID Unique job ID

JOB_TITLE Job title

MIN_RATE Minimum salary/hourly rate for this job

MAX_RATE Maximum salary/hourly rate for this job

SALARY_IND Indicator for type of salary: (S) salaried; (H)
hourly

NUM_OF_POSITIONS Total number of positions for this job

NUM_OPEN Number of positions currently open

EFF_DATE Date this job became effective

JOB_DESLINE_1 First line of job description

JOB_DESLINE_2 Second line of job description

C-6 CA-IDMS SQL Self-Training Guide

C.1 Table names and descriptions

 POSITION

 PROJECT

 SKILL

EMP_ID Employee ID

JOB_ID Job ID associated with this employee

START_DATE Date employee began this job

FINISH_DATE Date employee ended this job (null if current)

HOURLY_RATE Hourly rate earned while in this job (if hourly
position)

SALARY_AMOUNT Yearly salary earned while in this job (if salaried
position)

BONUS_PERCENT Bonus percent amount for this position (if sales
position)

COMM_PERCENT Commission percent for this position (if sales
position)

OVERTIME_RATE Overtime rate for this position (if hourly position)

PROJ_ID Unique project ID

PROJ_LEADER_ID Employee ID of project leader

EST_START_DATE Estimated date project is to begin

EST_END_DATE Estimated date project is to end

ACT_START_DATE Actual date project began

ACT_END_DATE Actual date project ended

EST_MAN_HOURS Total number of hours estimated for project

ACT_MAN_HOURS Actual number of hours required for project

PROJ_DESC Project description

SKILL_ID Unique skill ID

SKILL_NAME Skill name

SKILL_DESC Skill description

Appendix C. Table Descriptions C-7

C.1 Table names and descriptions

C-8 CA-IDMS SQL Self-Training Guide

 Index

Index X-1

	CA-IDMS SQL Self-Training Guide
	Contents
	How to Use This Manual
	What this guide is about
	What you will learn
	Who should use this guide
	Online exercises
	How to proceed
	The demonstration database

	Part I. Introduction to Relational Databases and SQL Chapter 1. Relational Database Concepts
	1.1 About this chapter
	1.2 Tables
	1.3 Relationships among tables
	1.4 Relational operations
	1.5 Benefits of a relational database
	1.6 Review

	Chapter 2. What Is SQL?
	2.1 About this chapter
	2.2 Why SQL
	2.2.1 What can SQL do?

	2.3 Components of an SQL statement
	2.4 Interactive and embedded SQL
	2.5 Review

	Part II. Using SQL Data Manipulation Language Chapter 3. Retrieving Data
	3.1 About this chapter
	3.2 Retrieving all columns from a table
	3.2.1 Exercise 3- 1

	3.3 Retrieving selected columns from a table
	3.3.1 Exercise 3- 2
	3.3.2 Exercise 3- 3

	3.4 Renaming column headings
	3.4.1 Exercise 3- 4

	3.5 Displaying calculations in columns
	3.5.1 Exercise 3- 5

	3.6 Eliminating duplicate rows
	3.6.1 Exercise 3- 6

	3.7 Organizing data
	3.7.1 Exercise 3- 7
	3.7.2 Exercise 3- 8
	3.7.3 Exercise 3- 9
	3.7.4 Exercise 3- 10

	3.8 Review
	3.9 Scenarios

	Chapter 4. Using Conditional Retrieval
	4.1 About this chapter
	4.2 The WHERE clause
	4.3 Comparison operators and keywords in predicates
	4.4 Using comparison operators in predicates
	4.4.1 Exercise 4- 1
	4.4.2 Exercise 4- 2
	4.4.3 Exercise 4- 3
	4.4.4 Exercise 4- 4

	4.5 Using keywords in predicates
	4.5.1 Exercise 4- 5
	4.5.2 Exercise 4- 6
	4.5.3 Exercise 4- 7
	4.5.4 Exercise 4- 8
	4.5.5 Exercise 4- 9
	4.5.6 Exercise 4- 10

	4.6 Using calculated values in predicates
	4.6.1 Exercise 4- 11

	4.7 Combining predicates
	4.7.1 Exercise 4- 12

	4.8 Review
	4.9 Scenarios

	Chapter 5. Using Aggregate Functions
	5.1 About this chapter
	5.2 Aggregate functions
	5.2.1 Exercise 5- 1
	5.2.2 Exercise 5- 2
	5.2.3 Exercise 5- 3
	5.2.4 Exercise 5- 4
	5.2.5 Exercise 5- 5
	5.2.6 Exercise 5- 6
	5.2.7 Exercise 5- 7

	5.3 Eliminating duplicate rows
	5.3.1 Exercise 5- 8

	5.4 Grouping information
	5.4.1 Exercise 5- 9
	5.4.2 Exercise 5- 10

	5.5 Using HAVING
	5.5.1 Exercise 5- 11
	5.5.2 Exercise 5- 12

	5.6 Renaming column headings
	5.6.1 Exercise 5- 13

	5.7 Review
	5.8 Scenarios

	Chapter 6. Accessing Multiple Tables
	6.1 About this chapter
	6.2 What is a join operation?
	6.2.1 Joining tables on common columns
	6.2.1.1 Exercise 6- 1

	6.2.2 Qualifying a column name
	6.2.3 Qualifying a table name
	6.2.3.1 Exercise 6- 2

	6.2.4 Sorting the result
	6.2.4.1 Exercise 6- 3

	6.2.5 Additional search criteria in a join
	6.2.6 Exercise 6- 4
	6.2.7 Things to remember about joining tables

	6.3 Joining a table to itself
	6.4 Using UNION
	6.5 Review
	6.6 Scenarios

	Chapter 7. Nesting SELECT Statements
	7.1 About this chapter
	7.2 SELECT statement in a WHERE clause
	7.3 Using a subquery with IN
	7.3.1 Exercise 7- 1

	7.4 Using an aggregate function in a nested SELECT statement
	7.4.1 Exercise 7- 2
	7.4.1.1 Exercise 7- 2B

	7.5 Using EXISTS
	7.5.1 Exercise 7- 3

	7.6 Things to remember about subqueries
	7.7 Review
	7.8 Scenarios

	Chapter 8. Updating a Table
	8.1 About this chapter
	8.2 Inserting data into a table
	8.2.1 Exercise 8- 1
	8.2.2 Exercise 8- 2
	8.2.3 Exercise 8- 3

	8.3 Modifying data in a table with SET
	8.3.1 Exercise 8- 4
	8.3.2 Exercise 8- 5
	8.3.3 Exercise 8- 6
	8.3.4 Exercise 8- 7

	8.4 Removing data from a table
	8.4.1 Exercise 8- 8
	8.4.2 Exercise 8- 9

	8.5 Review

	Part III. Appendixes Appendix A. Sample Data Description Language
	A. 1 About this appendix
	A. 2 Table creation
	A. 3 Indexes
	A. 4 Views
	A. 5 Data integrity

	Appendix B. Answers to Exercises
	B. 1 Chapter 1
	B. 2 Chapter 2
	B. 3 Chapter 3
	B. 4 Chapter 4
	B. 5 Chapter 5
	B. 6 Chapter 6
	B. 7 Chapter 7
	B. 8 Chapter 8

	Appendix C. Table Descriptions
	C. 1 Table names and descriptions

	Index

